Band-gap renormalization in quantum wire systems: dynamical correlations and multi-subband effects
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
We study the band-gap renormalization m a model semiconductor quantum wire due to the exchange-correlation effects among the charge carriers. We construct a two-subband model for the quantum wire, and employ the GW-approximation to obtain the renormalized quasi-particle energies at the optical band edge. The renormalization is calculated as a function of electron-hole plasma density and the wire radius. Our results show that the very presence of the second subband affects the renormalization process even in the absence of occupation by the carriers. We compare the fully dynamical random-phase approximation results to the quasi-static case in order to emphasize the dynamical correlation effects. Effects of electron-phonon interaction within the two-subband model are also considered.