Qoe evaluation in adaptive streaming enhanced MDT with deep learning
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
We propose an architecture for performing virtual drive tests for mobile network performance evaluation by facilitating radio signal strength data from user equipment. Our architecture comprises three main components: (i) pattern recognizer that learns a typical (nominal) behavior for application KPIs (key performance indicators); (ii) predictor that maps from network KPIs to application KPIs; (iii) anomaly detector that compares predicted application performance with said typical pattern. To simulate user-traces, we utilize a commercial state-of-the-art network optimization tool, which collects application and network KPIs at different geographical locations at various times of the day, to train an initial learning model. Although the collected data is related to an adaptive video streaming application, the proposed architecture is flexible, autonomous and can be used for other applications. We perform extensive numerical analysis to demonstrate key parameters impacting video quality prediction and anomaly detection. Playback time is shown to be the most important parameter affecting video quality, most likely due to video packet buffering during playback. We additionally observe that network KPIs, which characterize the cellular connection strength, improve QoE (quality of experience) estimation in anomalous cases diverging from the nominal. The efficacy of our approach is demonstrated with a mean-maximum F1-score of 77%.