Parallel-MLFMA solution of CFIE discretized with tens of millions of unknowns

Date
2007
Advisor
Instructor
Source Title
Proceedings of the 2nd European Conference on Antennas and Propagation, EuCAP 2007
Print ISSN
Electronic ISSN
Publisher
Institution of Engineering and Technology
Volume
2007
Issue
11961
Pages
Language
English
Type
Conference Paper
Journal Title
Journal ISSN
Volume Title
Abstract

We consider the solution of large scattering problems in electromagnetics involving three-dimensional arbitrary geometries with closed surfaces. The problems are formulated accurately with the combined-field integral equation and the resulting dense matrix equations are solved iteratively by employing the multilevel fast multipole algorithm (MLFMA). With an efficient parallelization of MLFMA on relatively inexpensive computing platforms using distributed-memory architectures, we easily solve large-scale problems that are discretized with tens of millions of unknowns. Accuracy of the solutions is demonstrated on scattering problems involving spheres of various sizes, including a sphere of radius 110 λ discretized with 41,883,638 unknowns, which is the largest integral-equation problem ever solved, to the best of our knowledge. In addition to canonical problems, we also present the solution of real-life problems involving complicated targets with large dimensions.

Course
Other identifiers
Book Title
Keywords
Combined-field integral equation, Electromagnetic scattering, Largescale problems, Multilevel fast multipole algorithm, Parallelization, Electromagnetic wave scattering, Electromagnetism, Integral equations, Parallel algorithms, Antennas
Citation
Published Version (Please cite this version)