On maximum modulus points and zero sets of entire functions of regular growth

dc.citation.epage618en_US
dc.citation.issueNumber2en_US
dc.citation.spage583en_US
dc.citation.volumeNumber38en_US
dc.contributor.authorOstrovskii I.en_US
dc.contributor.authorÜreyen, A.E.en_US
dc.date.accessioned2016-02-08T10:09:14Z
dc.date.available2016-02-08T10:09:14Z
dc.date.issued2008en_US
dc.departmentDepartment of Mathematicsen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractLet f be an entire function. We denote by R(w, f) the distance between a maximum modulus point w and the zero set of f. In a previous paper, the authors obtained asymptotical lower bounds for R(w, f) as |w| → ∞ for functions of finite positive order and regular growth. In this work we extend those results to functions of either zero or infinite order and show that our results are sharp in sense of order. Copyright © 2008 Rocky Mountain Mathematics Consortium.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:09:14Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2008en
dc.identifier.doi10.1216/RMJ-2008-38-2-583en_US
dc.identifier.issn0035-7596
dc.identifier.urihttp://hdl.handle.net/11693/23122
dc.language.isoEnglishen_US
dc.relation.isversionofhttp://dx.doi.org/10.1216/RMJ-2008-38-2-583en_US
dc.source.titleRocky Mountain Journal of Mathematicsen_US
dc.subjectEntire functionen_US
dc.subjectOrderen_US
dc.subjectProximate orderen_US
dc.subjectRegular growthen_US
dc.subjectZero seten_US
dc.titleOn maximum modulus points and zero sets of entire functions of regular growthen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
On maximum modulus points and zero sets of entire functions of regular growth.pdf
Size:
370.81 KB
Format:
Adobe Portable Document Format
Description:
Full printable version