A software tool for the compact solution of the chemical master equation
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
The problem of computing the transient probability distribution of countably infinite multidimensional continuous-time Markov chains (CTMCs) arising in systems of stochastic chemical kinetics is addressed by a software tool. Starting from an initial probability distribution, time evolution of the probability distribution associated with the CTMC is described by a system of linear first-order ordinary differential equations, known as the chemical master equation (CME). The solver for the CME uses the time stepping implicit backward differentiation formulae (BDF). Solution vectors in BDF can be stored compactly during transient analysis in one of the Hierarchical Tucker Decomposition, Quantized Tensor Train, or Transposed Quantized Tensor Train formats.