Compressive sensing using the modified entropy functional

buir.contributor.authorÇetin, A. Enis
buir.contributor.orcidÇetin, A. Enis|0000-0002-3449-1958
dc.citation.epage70en_US
dc.citation.spage63en_US
dc.citation.volumeNumber24en_US
dc.contributor.authorKose, K.en_US
dc.contributor.authorGunay, O.en_US
dc.contributor.authorÇetin, A. Enisen_US
dc.date.accessioned2015-07-28T12:03:54Z
dc.date.available2015-07-28T12:03:54Z
dc.date.issued2014-01en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractIn most compressive sensing problems, 1 norm is used during the signal reconstruction process. In this article, a modified version of the entropy functional is proposed to approximate the 1 norm. The proposed modified version of the entropy functional is continuous, differentiable and convex. Therefore, it is possible to construct globally convergent iterative algorithms using Bregman’s row-action method for compressive sensing applications. Simulation examples with both 1D signals and images are presented. © 2013 Elsevier Inc. All rights reserved.en_US
dc.description.provenanceMade available in DSpace on 2015-07-28T12:03:54Z (GMT). No. of bitstreams: 1 10.1016-j.dsp.2013.09.010.pdf: 555330 bytes, checksum: b8e012ef91df1a2b390478a1fe530827 (MD5)en
dc.identifier.doi10.1016/j.dsp.2013.09.010en_US
dc.identifier.issn1051-2004
dc.identifier.urihttp://hdl.handle.net/11693/12922
dc.language.isoEnglishen_US
dc.publisherAcademic Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.dsp.2013.09.010en_US
dc.source.titleCompressive sensingen_US
dc.subjectModified entropy functionalen_US
dc.subjectProjection onto convex setsen_US
dc.subjectIterative row-action methodsen_US
dc.subjectBregman-projectionen_US
dc.subjectProximal splittingen_US
dc.titleCompressive sensing using the modified entropy functionalen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1016-j.dsp.2013.09.010.pdf
Size:
542.31 KB
Format:
Adobe Portable Document Format