Unsupervised medical image translation with adversarial diffusion models

buir.contributor.authorÖzbey , Muzaffer
buir.contributor.authorDalmaz , Onat
buir.contributor.authorDar , Salman Ul Hassan
buir.contributor.authorBedel , Hasan Atakan
buir.contributor.authorÖzturk , Şaban
buir.contributor.authorGüngör , Alper
buir.contributor.authorÇukur , Tolga
buir.contributor.orcidÖzbey, Muzaffer|0000-0002-6262-8915
buir.contributor.orcidDalmaz, Onat|0000-0001-7978-5311
buir.contributor.orcidGüngör, Alper|0000-0002-3043-9124
buir.contributor.orcidÇukur, Tolga|0000-0002-2296-851X
dc.citation.epage3539en_US
dc.citation.issueNumber12
dc.citation.spage3524
dc.citation.volumeNumber42
dc.contributor.authorÖzbey, Muzaffer
dc.contributor.authorDalmaz, Onat
dc.contributor.authorDar, Salman Ul Hassan
dc.contributor.authorBedel, Hasan Atakan
dc.contributor.authorÖzturk, Şaban
dc.contributor.authorGüngör, Alper
dc.contributor.authorÇukur, Tolga
dc.date.accessioned2024-03-18T15:14:49Z
dc.date.available2024-03-18T15:14:49Z
dc.date.issued2023-11-30
dc.departmentDepartment of Electrical and Electronics Engineering
dc.departmentNational Magnetic Resonance Research Center (UMRAM)
dc.description.abstractImputation of missing images via source-to-target modality translation can improve diversity in medical imaging protocols. A pervasive approach for synthesizing target images involves one-shot mapping through generative adversarial networks (GAN). Yet, GAN models that implicitly characterize the image distribution can suffer from limited sample fidelity. Here, we propose a novel method based on adversarial diffusion modeling, SynDiff, for improved performance in medical image translation. To capture a direct correlate of the image distribution, SynDiff leverages a conditional diffusion process that progressively maps noise and source images onto the target image. For fast and accurate image sampling during inference, large diffusion steps are taken with adversarial projections in the reverse diffusion direction. To enable training on unpaired datasets, a cycle-consistent architecture is devised with coupled diffusive and non-diffusive modules that bilaterally translate between two modalities. Extensive assessments are reported on the utility of SynDiff against competing GAN and diffusion models in multi-contrast MRI and MRI-CT translation. Our demonstrations indicate that SynDiff offers quantitatively and qualitatively superior performance against competing baselines.
dc.description.provenanceMade available in DSpace on 2024-03-18T15:14:49Z (GMT). No. of bitstreams: 1 Unsupervised_medical_image_translation_with_adversarial_diffusion_models.pdf: 4798314 bytes, checksum: 593a3a1a0fd46394e848b8c941f995c2 (MD5) Previous issue date: 2023-12-01en
dc.identifier.doi10.1109/TMI.2023.3290149
dc.identifier.eissn1558-254X
dc.identifier.issn0278-0062
dc.identifier.urihttps://hdl.handle.net/11693/114919
dc.language.isoEnglish
dc.publisherInstitute of Electrical and Electronics Engineers
dc.relation.isversionofhttps://dx.doi.org/10.1109/TMI.2023.3290149
dc.source.titleIEEE Transactions on Medical Imaging
dc.subjectMedical image translation
dc.subjectSynthesis
dc.subjectUnsupervised
dc.subjectUnpaired
dc.subjectAdversarial
dc.subjectDiffusion
dc.subjectGenerative
dc.titleUnsupervised medical image translation with adversarial diffusion models
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Unsupervised_medical_image_translation_with_adversarial_diffusion_models.pdf
Size:
4.57 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.01 KB
Format:
Item-specific license agreed upon to submission
Description: