Robot move sequence determining and multiple part-type scheduling in hybrid flexible flow shop robotic cells
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
We focus on the scheduling problem arising in hybrid flexible flow shops which repeatedly produce a set of multiple part-types and where the transportation of the parts between the machines is performed by a robot. The cycle time of the cell is affected by the robot move sequence, part/machine assignments and part sequences. In a hybrid flexible flow shop in which there exist one machine in the first and two machines in the second stage, the problem of determining the best cycle time is modeled as a traveling salesman problem. In order to provide a solution methodology for realistic problem instances, a Simulated Annealing based heuristic is constructed and the problem is solved using two different neighborhood structures. The results are also compared against an effective proposed lower bound value.