Clifford theory for Mackey algebras

dc.citation.epage274en_US
dc.citation.issueNumber1en_US
dc.citation.spage244en_US
dc.citation.volumeNumber303en_US
dc.contributor.authorYaraneri, E.en_US
dc.date.accessioned2015-07-28T11:57:56Z
dc.date.available2015-07-28T11:57:56Z
dc.date.issued2006-09-01en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractWe develop a Clifford theory for Mackey algebras. For simple Mackey functors, using their classification we prove Mackey algebra versions of Clifford's theorem and the Clifford correspondence. Let μR (G) be the Mackey algebra of a finite group G over a commutative unital ring R, and let 1N be the unity of μR (N) where N is a normal subgroup of G. Observing that 1N μR (G) 1N is a crossed product of G / N over μR (N), a number of results concerning group graded algebras are extended to the context of Mackey algebras, including Fong's theorem, Green's indecomposibility theorem and some reduction and extension techniques for indecomposable Mackey functors. © 2006 Elsevier Inc. All rights reserved.en_US
dc.description.provenanceMade available in DSpace on 2015-07-28T11:57:56Z (GMT). No. of bitstreams: 1 10.1016-j.jalgebra.2006.01.049.pdf: 298035 bytes, checksum: cb4e5b03d46bc8ed12f185267b43d858 (MD5)en
dc.identifier.doi10.1016/j.jalgebra.2006.01.049en_US
dc.identifier.eissn1090-266X
dc.identifier.issn0021-8693
dc.identifier.urihttp://hdl.handle.net/11693/11507
dc.language.isoEnglishen_US
dc.publisherAcademic Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jalgebra.2006.01.049en_US
dc.source.titleJournal of Algebraen_US
dc.subjectClifford theoryen_US
dc.subjectGraded algebraen_US
dc.subjectGreen ’ s indecomposibility criterionen_US
dc.subjectMackey Algebraen_US
dc.subjectMackey Functoren_US
dc.titleClifford theory for Mackey algebrasen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Clifford_theory_for_Mackey_algebras.pdf
Size:
291.05 KB
Format:
Adobe Portable Document Format
Description:
Full printable version