Constrained min-cut replication for K-way hypergraph partitioning

buir.contributor.authorAykanat, Cevdet
dc.citation.epage320en_US
dc.citation.issueNumber2en_US
dc.citation.spage303en_US
dc.citation.volumeNumber26en_US
dc.contributor.authorYazici V.en_US
dc.contributor.authorAykanat, Cevdeten_US
dc.date.accessioned2016-02-08T10:59:27Z
dc.date.available2016-02-08T10:59:27Z
dc.date.issued2014en_US
dc.departmentDepartment of Computer Engineeringen_US
dc.description.abstractReplication is a widely-used technique in information retrieval and database systems for providing fault tolerance and reducing parallelization and processing costs. Combinatorial models based on hypergraph partitioning are proposed for various problems arising in information retrieval and database systems. We consider the possibility of using vertex replication to improve the quality of hypergraph partitioning. In this study, we focus on the constrained min-cut replication (CMCR) problem, where we are initially given a maximum replication capacity and a K-way hypergraph partition with an initial imbalance ratio. The objective in the CMCR problem is finding the optimal vertex replication sets for each part of the given partition such that the initial cut size of the partition is minimized, where the initial imbalance is either preserved or reduced under the given replication capacity constraint. In this study, we present a complexity analysis of the CMCR problem and propose a model based on a unique blend of coarsening and integer linear programming (ILP) schemes. This coarsening algorithm is derived from a novel utilization of the Dulmage-Mendelsohn decomposition. Experiments show that the ILP formulation coupled with the Dulmage-Mendelsohn decomposition-based coarsening provides high quality results in practical execution times for reducing the cut size of a given K-way hypergraph partition. © 2014 INFORMS.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:59:27Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2014en
dc.identifier.doi10.1287/ijoc.2013.0567en_US
dc.identifier.eissn1526-5528en_US
dc.identifier.issn1091-9856en_US
dc.identifier.urihttp://hdl.handle.net/11693/26412en_US
dc.language.isoEnglishen_US
dc.publisherInstitute for Operations Research and the Management Sciences (I N F O R M S)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1287/ijoc.2013.0567en_US
dc.source.titleINFORMS Journal on Computing: charting new directions in OR and CSen_US
dc.subjectCombinatorial optimizationen_US
dc.subjectGraphsen_US
dc.subjectOptimizationen_US
dc.subjectProgramming: integeren_US
dc.subjectCoarseningen_US
dc.subjectCombinatorial optimizationen_US
dc.subjectDatabase systemsen_US
dc.subjectInformation retrievalen_US
dc.subjectCapacity constraintsen_US
dc.subjectCombinatorial modelsen_US
dc.subjectDulmage-mendelsohn decompositionsen_US
dc.subjectGraphsen_US
dc.subjectHeuristicsen_US
dc.subjectHypergraph partitionen_US
dc.subjectInteger linear programmingen_US
dc.subjectInteger programmingen_US
dc.titleConstrained min-cut replication for K-way hypergraph partitioningen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Constrained min-cut replication for K-way hypergraph partitioning.pdf
Size:
443.32 KB
Format:
Adobe Portable Document Format
Description:
Full printable version