Performance study of asynchronous/ synchronous optical burst/ packet switching with partial wavelength conversion

buir.advisorAkar, Nail
dc.contributor.authorDoğan, Kaan
dc.date.accessioned2016-07-01T11:04:45Z
dc.date.available2016-07-01T11:04:45Z
dc.date.issued2006
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.descriptionCataloged from PDF version of article.en_US
dc.description.abstractWavelength conversion is known to be one of the most effective methods for contention resolution in optical packet/burst switching networks. In this thesis, we study various optical switch architectures that employ partial wavelength conversion, as opposed to full wavelength conversion, in which a number of converters are statistically shared per input or output link. Blocking is inevitable in case contention cannot be resolved and the probability of packet blocking is key to performance studies surrounding optical packet switching systems. For asynchronous switching systems with per output link converter sharing, a robust and scalable Markovian queueing model has recently been proposed by Akar and Karasan for calculating blocking probabilities in case of Poisson traffic. One of the main contributions of this thesis is that this existing model has been extended to cover the more general case of a Markovian arrival process through which one can study the impact of traffic parameters on system performance. We further study the same problem but with the converters being of limited range type. Although an analytical model is hard to build for this problem, we show through simulations that the so-called far conversion policy in which the optical packet is switched onto the farthest available wavelength in the tuning range, outperforms the other policies we studied. We point out the clustering effect in the use of wavelengths to explain this phenomenon. Finally, we study a synchronous optical packet switching architecture employing partial wavelength conversion at the input using the per input line converter sharing. For this architecture, we first obtain the optimal wavelength scheduler using integer linear programming and then we propose a number of heuristical scheduling algorithms. These algorithms are tested using simulations under symmetric and asymmetric traffic scenarios. Our results demonstrate that one can substantially reduce the costs of converters used in optical switching systems by using share per input link converter sharing without having to sacrifice much from the low blocking probabilities provided by full input wavelength conversion. Moreover, we show that the heuristic algorithm that we propose in this paper provides packet loss probabilities very close to those achievable using integer linear programming and is also easy to implement.en_US
dc.description.degreeM.S.en_US
dc.description.provenanceMade available in DSpace on 2016-07-01T11:04:45Z (GMT). No. of bitstreams: 1 0003054.pdf: 632099 bytes, checksum: 98225adcb41e9e0670fa781fe4ffe568 (MD5) Previous issue date: 2006en
dc.description.statementofresponsibilityDoğan, Kaanen_US
dc.format.extentxii, 58 leaves, illustrationsen_US
dc.identifier.itemidBILKUTUPB096225
dc.identifier.urihttp://hdl.handle.net/11693/29772
dc.language.isoEnglishen_US
dc.publisherBilkent Universityen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectOptical packet switchingen_US
dc.subjectOptical burst switchingen_US
dc.subjectWavelength conversionen_US
dc.subjectConverter sharingen_US
dc.subjectBlock-tridiagonal LU factorizationen_US
dc.subjectMarkovian arrival processen_US
dc.subjectWavelength schedulingen_US
dc.subject.lccTK5105.3 .D64 2006en_US
dc.subject.lcshPacket switching.en_US
dc.titlePerformance study of asynchronous/ synchronous optical burst/ packet switching with partial wavelength conversionen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0003054.pdf
Size:
617.28 KB
Format:
Adobe Portable Document Format
Description:
Full printable version