Image processing methods for food inspection

Date

2012

Editor(s)

Advisor

Çetin, A. Enis

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
2
views
8
downloads

Series

Abstract

With the advances in computer technology, signal processing techniques are widely applied to many food safety applications. In this thesis, new methods are developed to solve two food safety problems using image processing techniques. First problem is the detection of fungal infection on popcorn kernel images. This is a damage called blue-eye caused by a fungus. A cepstrum based feature extraction method is applied to the kernel images for classification purposes. The results of this technique are compared with the results of a covariance based feature extraction method, and previous solutions to the problem. The tests are made on two different databases; reflectance and transmittance mode image databases, in which the method of the image acquisition differs. Support Vector Machine (SVM) is used for image feature classification. It is experimentally observed that an overall success rate of 96% is possible with the covariance matrix based feature extraction method over transmittance database and 94% is achieved for the reflectance database. The second food inspection problem is the detection of acrylamide on cookies that is generated by cooking at high temperatures. Acrylamide is a neurotoxin

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)