On the solvability of the Painleve VI equation

dc.citation.epage4121en_US
dc.citation.issueNumber14en_US
dc.citation.spage4109en_US
dc.citation.volumeNumber28en_US
dc.contributor.authorMugan, U.en_US
dc.contributor.authorSakka, A.en_US
dc.date.accessioned2016-02-08T10:51:25Z
dc.date.available2016-02-08T10:51:25Z
dc.date.issued1995en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractA rigorous method was introduced by Fokas and Zhou (1992) for studying the Riemann-Hilbert problem associated with the Painleve II and IV equations. The same methodology has been applied to the Painleve I, III and V equations. In this paper, we will apply the same methodology to the Painleve VI equation. We will show that the Cauchy problem for the Painleve VI equation admits, in general, a global meromorphic solution in t. Furthermore, the special solution which can be written in terms of a hypergeometric function is obtained via solving the special case of the Riemann-Hilbert problem.en_US
dc.identifier.doi10.1088/0305-4470/28/14/027en_US
dc.identifier.eissn1361-6447
dc.identifier.issn0305-4470
dc.identifier.urihttp://hdl.handle.net/11693/25857
dc.language.isoEnglishen_US
dc.publisherInstitute of Physics Publishing Ltd.en_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/0305-4470/28/14/027en_US
dc.source.titleJournal of Physics A: Mathematical and Generalen_US
dc.titleOn the solvability of the Painleve VI equationen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
On_the_Solvability_of_the_Painleve_VI_Equation.pdf
Size:
4.12 MB
Format:
Adobe Portable Document Format
Description:
Full printable version