Region covariance descriptors calculated over the salient points for target tracking

buir.contributor.authorÇetin, A. Enis
buir.contributor.orcidÇetin, A. Enis|0000-0002-3449-1958
dc.contributor.authorÇakir, S.en_US
dc.contributor.authorAytaç, T.en_US
dc.contributor.authorYildirim, A.en_US
dc.contributor.authorBeheshti, S.en_US
dc.contributor.authorGerek Ö.N.en_US
dc.contributor.authorÇetin, A. Enisen_US
dc.coverage.spatialMugla, Turkeyen_US
dc.date.accessioned2016-02-08T12:14:10Z
dc.date.available2016-02-08T12:14:10Z
dc.date.issued2012en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.descriptionDate of Conference: 18-20 April 2012en_US
dc.description.abstractFeatures extracted at salient points in the image are used to construct region covariance descriptor (RCD) for target tracking purposes. In the classical approach, the RCD is computed by using the features at each pixel location and thus, increases the computational cost in the scenarios where large targets are tracked. The approach in which the features at each pixel location are used, is redundant in cases where image statistics do not change significantly between neighboring pixels. Furthermore, this may decrease the tracking accuracy while tracking large targets which have background dominating structures. In the proposed approach, the salient points are extracted via the Shi and Tomasi's minimum eigenvalue method and a descriptor based target tracking structure is constructed based on the features extracted only at these salient points. Experimental results indicate that the proposed method provides comparable and in some cases even better tracking results compared to the classical method while providing a computationally more efficient structure. © 2012 IEEE.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T12:14:10Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2012en
dc.identifier.doi10.1109/SIU.2012.6204596en_US
dc.identifier.urihttp://hdl.handle.net/11693/28207
dc.language.isoTurkishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/SIU.2012.6204596en_US
dc.source.title2012 20th Signal Processing and Communications Applications Conference (SIU)en_US
dc.subjectClassical approachen_US
dc.subjectClassical methodsen_US
dc.subjectComputational costsen_US
dc.subjectDescriptorsen_US
dc.subjectEigenvalue methodsen_US
dc.subjectImage statisticsen_US
dc.subjectPixel locationen_US
dc.subjectRegion covarianceen_US
dc.subjectRegion covariance descriptorsen_US
dc.subjectSalient pointsen_US
dc.subjectTracking accuracyen_US
dc.subjectEigenvalues and eigenfunctionsen_US
dc.subjectSignal processingen_US
dc.subjectTarget trackingen_US
dc.titleRegion covariance descriptors calculated over the salient points for target trackingen_US
dc.title.alternativeHedef izleme için önemli noktalar üzerinden hesaplanan bölgesel ortak değiş inti betimleyicilerien_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Region covariance descriptors calculated over the salient points for target tracking [Hedef i̇zleme i̇çi̇n önemli̇ noktalar üzeri̇nden hesaplanan bölgesel ortak deǧi̇ş i̇nti̇ beti̇mleyi̇ci̇leri̇].pdf
Size:
832.18 KB
Format:
Adobe Portable Document Format
Description:
Full printable version