Region covariance descriptors calculated over the salient points for target tracking
buir.contributor.author | Çetin, A. Enis | |
buir.contributor.orcid | Çetin, A. Enis|0000-0002-3449-1958 | |
dc.contributor.author | Çakir, S. | en_US |
dc.contributor.author | Aytaç, T. | en_US |
dc.contributor.author | Yildirim, A. | en_US |
dc.contributor.author | Beheshti, S. | en_US |
dc.contributor.author | Gerek Ö.N. | en_US |
dc.contributor.author | Çetin, A. Enis | en_US |
dc.coverage.spatial | Mugla, Turkey | en_US |
dc.date.accessioned | 2016-02-08T12:14:10Z | |
dc.date.available | 2016-02-08T12:14:10Z | |
dc.date.issued | 2012 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description | Date of Conference: 18-20 April 2012 | en_US |
dc.description.abstract | Features extracted at salient points in the image are used to construct region covariance descriptor (RCD) for target tracking purposes. In the classical approach, the RCD is computed by using the features at each pixel location and thus, increases the computational cost in the scenarios where large targets are tracked. The approach in which the features at each pixel location are used, is redundant in cases where image statistics do not change significantly between neighboring pixels. Furthermore, this may decrease the tracking accuracy while tracking large targets which have background dominating structures. In the proposed approach, the salient points are extracted via the Shi and Tomasi's minimum eigenvalue method and a descriptor based target tracking structure is constructed based on the features extracted only at these salient points. Experimental results indicate that the proposed method provides comparable and in some cases even better tracking results compared to the classical method while providing a computationally more efficient structure. © 2012 IEEE. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T12:14:10Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2012 | en |
dc.identifier.doi | 10.1109/SIU.2012.6204596 | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/28207 | |
dc.language.iso | Turkish | en_US |
dc.publisher | IEEE | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/SIU.2012.6204596 | en_US |
dc.source.title | 2012 20th Signal Processing and Communications Applications Conference (SIU) | en_US |
dc.subject | Classical approach | en_US |
dc.subject | Classical methods | en_US |
dc.subject | Computational costs | en_US |
dc.subject | Descriptors | en_US |
dc.subject | Eigenvalue methods | en_US |
dc.subject | Image statistics | en_US |
dc.subject | Pixel location | en_US |
dc.subject | Region covariance | en_US |
dc.subject | Region covariance descriptors | en_US |
dc.subject | Salient points | en_US |
dc.subject | Tracking accuracy | en_US |
dc.subject | Eigenvalues and eigenfunctions | en_US |
dc.subject | Signal processing | en_US |
dc.subject | Target tracking | en_US |
dc.title | Region covariance descriptors calculated over the salient points for target tracking | en_US |
dc.title.alternative | Hedef izleme için önemli noktalar üzerinden hesaplanan bölgesel ortak değiş inti betimleyicileri | en_US |
dc.type | Conference Paper | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Region covariance descriptors calculated over the salient points for target tracking [Hedef i̇zleme i̇çi̇n önemli̇ noktalar üzeri̇nden hesaplanan bölgesel ortak deǧi̇ş i̇nti̇ beti̇mleyi̇ci̇leri̇].pdf
- Size:
- 832.18 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version