X-ray photoemission for probing charging/discharging dynamics
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Series
Abstract
A novel technique is introduced for probing charging/discharging dynamics of dielectric materials in which X-ray photoemission data is recorded while the sample rod is subjected to ± 10.0 V square-wave pulses with varying frequencies in the range of 10-3 to 103 Hz. For a clean silicon sample, the Si2p(Si0) peak appears at correspondingly -10.0 eV and +10.0 eV binding energy positions (20.0 eV difference) with no frequency dependence. However, the corresponding peak of the oxide (Si4+) appears with less than 20.0 eV difference and exhibits a strong frequency dependence due to charging of the oxide layer, which is faithfully reproduced by a theoretical model. In the simplest application of this technique, we show that the two O1s components can be assigned to SiOx and TiO y moeties by correlating their dynamical shifts to those of the Si2p and Ti2p peaks in a composite sample. Our pulsing technique turns the powerful X-ray photoemission into an even more powerful impedance spectrometer with an added advantage of chemical resolution and specificity. © 2006 American Chemical Society.