Singular integral operators with Bergman–Besov kernels on the ball
buir.contributor.author | Kaptanoğlu, H. Turgay | |
dc.citation.epage | 30-1 | en_US |
dc.citation.issueNumber | 4 | en_US |
dc.citation.spage | 30-30 | en_US |
dc.citation.volumeNumber | 91 | en_US |
dc.contributor.author | Kaptanoğlu, H. Turgay | en_US |
dc.contributor.author | Üreyen, A. E. | en_US |
dc.date.accessioned | 2020-02-04T09:08:50Z | |
dc.date.available | 2020-02-04T09:08:50Z | |
dc.date.issued | 2019 | |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | We completely characterize in terms of the six parameters involved the boundedness of all standard weighted integral operators induced by Bergman–Besov kernels acting between different Lebesgue classes with standard weights on the unit ball of CN. The integral operators generalize the Bergman–Besov projections. To find the necessary conditions for boundedness, we employ a new versatile method that depends on precise imbedding and inclusion relations among various holomorphic function spaces. The sufficiency proofs are by Schur tests or integral inequalities. | en_US |
dc.description.provenance | Submitted by Zeynep Aykut (zeynepay@bilkent.edu.tr) on 2020-02-04T09:08:49Z No. of bitstreams: 1 Singular_integral_operators_with_Bergman_Besov_Kernels_on_the_ball.pdf: 622847 bytes, checksum: 2e13143ab2d6579bea70968316c74c1d (MD5) | en |
dc.description.provenance | Made available in DSpace on 2020-02-04T09:08:50Z (GMT). No. of bitstreams: 1 Singular_integral_operators_with_Bergman_Besov_Kernels_on_the_ball.pdf: 622847 bytes, checksum: 2e13143ab2d6579bea70968316c74c1d (MD5) Previous issue date: 2019 | en |
dc.identifier.doi | 10.1007/s00020-019-2528-0 | en_US |
dc.identifier.issn | 0378-620X | |
dc.identifier.uri | http://hdl.handle.net/11693/53038 | |
dc.language.iso | English | en_US |
dc.publisher | Springer | en_US |
dc.relation.isversionof | https://dx.doi.org/10.1007/s00020-019-2528-0 | en_US |
dc.source.title | Integral Equations and Operator Theory | en_US |
dc.subject | Integral operator | en_US |
dc.subject | Bergman–Besov kernel | en_US |
dc.subject | Bergman–Besov space | en_US |
dc.subject | Bloch–Lipschitz space | en_US |
dc.subject | Bergman–Besov projection | en_US |
dc.subject | Radial fractional derivative | en_US |
dc.subject | Schur test | en_US |
dc.subject | Forelli–Rudin estimate | en_US |
dc.subject | Inclusion relation | en_US |
dc.title | Singular integral operators with Bergman–Besov kernels on the ball | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Singular_integral_operators_with_Bergman_Besov_Kernels_on_the_ball.pdf
- Size:
- 608.25 KB
- Format:
- Adobe Portable Document Format
- Description:
- View / Download
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: