Generalizations of verheul's theorem to asymmetric pairings
dc.citation.epage | 111 | en_US |
dc.citation.issueNumber | 1 | en_US |
dc.citation.spage | 103 | en_US |
dc.citation.volumeNumber | 7 | en_US |
dc.contributor.author | Karabina, K. | en_US |
dc.contributor.author | Knapp, E. | en_US |
dc.contributor.author | Menezes, A. | en_US |
dc.date.accessioned | 2016-02-08T09:41:11Z | |
dc.date.available | 2016-02-08T09:41:11Z | |
dc.date.issued | 2013 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | For symmetric pairings e: G × G → GT, Verheul proved that the existence of an efficiently-computable isomorphism Φ: GT → G implies that the Diffie-Hellman problems in G and GT can be efficiently solved. In this paper, we explore the implications of the existence of efficiently-computable isomorphisms Φ1: GT →G1 and Φ2: GT →G2 for asymmetric pairings e: G1 × G2 → GT. We also give a simplified proof of Verheul's theorem. © 2013 AIMS. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T09:41:11Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2013 | en |
dc.identifier.doi | 10.3934/amc.2013.7.103 | en_US |
dc.identifier.issn | 19305346 | |
dc.identifier.uri | http://hdl.handle.net/11693/21101 | |
dc.language.iso | English | en_US |
dc.relation.isversionof | http://dx.doi.org/10.3934/amc.2013.7.103 | en_US |
dc.source.title | Advances in Mathematics of Communications | en_US |
dc.subject | Asymmetric pairings | en_US |
dc.subject | Cryptography | en_US |
dc.subject | Discrete logarithm problem | en_US |
dc.subject | Verheul's theorem | en_US |
dc.title | Generalizations of verheul's theorem to asymmetric pairings | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Generalizations of verheul's theorem to asymmetric pairings.pdf
- Size:
- 134.07 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version