Theoretical limits of the multistacked 1-D and 2-D microstructured inorganic solar cells

dc.citation.epage956103/7en_US
dc.citation.spage956103/1en_US
dc.contributor.authorYengel, Emreen_US
dc.contributor.authorKaraağaç, H.en_US
dc.contributor.authorLogeeswaran, V. J.en_US
dc.contributor.authorİslam, M. S.en_US
dc.coverage.spatialSan Diego, California, United States
dc.date.accessioned2016-02-08T12:10:42Z
dc.date.available2016-02-08T12:10:42Z
dc.date.issued2015-08en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.descriptionDate of Conference: 9-13 August 2015
dc.descriptionConference name: SPIE Optics + Photonics for Sustainable Energy, 2015 - Proceedings - Thin Films for Solar and Energy Technology VII
dc.description.abstractRecent studies in monocrystalline semiconductor solar cells are focused on mechanically stacking multiple cells from different materials to increase the power conversion efficiency. Although, the results show promising increase in the device performance, the cost remains as the main drawback. In this study, we calculated the theoretical limits of multistacked 1D and 2D microstructered inorganic monocrstalline solar cells. This system is studied for Si and Ge material pair. The results show promising improvements in the surface reflection due to enhanced light trapping caused by photon-microstructures interactions. The theoretical results are also supported with surface reflection and angular dependent power conversion efficiency measurements of 2D axial microwall solar cells. We address the challenge of cost reduction by proposing to use our recently reported mass-manufacturable fracture-transfer- printing method which enables the use of a monocrystalline substrate wafer for repeated fabrication of devices by consuming only few microns of materials in each layer of devices. We calculated thickness dependent power conversion efficiencies of multistacked Si/Ge microstructured solar cells and found the power conversion efficiency to saturate at %26 with a combined device thickness of 30 μm. Besides having benefits of fabricating low-cost, light weight, flexible, semi-transparent, and highly efficient devices, the proposed fabrication method is applicable for other III-V materials and compounds to further increase the power conversion efficiency above 35% range. © 2015 SPIE.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T12:10:42Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2015en
dc.identifier.doi10.1117/12.2188355en_US
dc.identifier.issn0277-786X
dc.identifier.urihttp://hdl.handle.net/11693/28086
dc.language.isoEnglishen_US
dc.publisherSPIEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1117/12.2188355en_US
dc.source.titleProceedings - Thin Films for Solar and Energy Technology VIIen_US
dc.subject1-D and 2-D microstructureen_US
dc.subjectFracture-transfer-printingen_US
dc.subjectSi/Ge solar cellen_US
dc.subjectConversion efficiencyen_US
dc.subjectCost reductionen_US
dc.subjectCostsen_US
dc.subjectFractureen_US
dc.subjectGermaniumen_US
dc.subjectMicrostructureen_US
dc.subjectPrintingen_US
dc.subjectSiliconen_US
dc.subjectSilicon solar cellsen_US
dc.subjectSilicon wafersen_US
dc.subjectThin filmsen_US
dc.subjectInorganic solar cellsen_US
dc.subjectMonocrystalline semiconductorsen_US
dc.subjectMonocrystalline substratesen_US
dc.subjectMultistacked PVen_US
dc.subjectPower conversion efficienciesen_US
dc.subjectSi/Geen_US
dc.subjectSurface reflectionsen_US
dc.subjectTransfer printingen_US
dc.subjectSolar cellsen_US
dc.titleTheoretical limits of the multistacked 1-D and 2-D microstructured inorganic solar cellsen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Theoretical_limits_of_the_multistacked_1-D_and_2-D_microstructured_inorganic_solar_cells.pdf
Size:
579.03 KB
Format:
Adobe Portable Document Format
Description: