Detection and elimination of systematic labeling bias in code reviewer recommendation systems
buir.contributor.author | Tüzün, Eray | |
buir.contributor.author | Dibeklioğlu, Hamdi | |
buir.contributor.orcid | Tüzün, Eray|0000-0002-5550-7816 | |
dc.citation.epage | 191 | en_US |
dc.citation.spage | 181 | en_US |
dc.contributor.author | Tecimer, K. Ayberk | |
dc.contributor.author | Tüzün, Eray | |
dc.contributor.author | Dibeklioğlu, Hamdi | |
dc.contributor.author | Erdoğmuş, Hakan | |
dc.coverage.spatial | Trondheim, Norway | en_US |
dc.date.accessioned | 2022-02-03T06:08:29Z | |
dc.date.available | 2022-02-03T06:08:29Z | |
dc.date.issued | 2021-06-21 | |
dc.department | Department of Computer Engineering | en_US |
dc.description | Conference Name: EASE 2021: Evaluation and Assessment in Software Engineering | en_US |
dc.description | Date of Conference: June 2021 | en_US |
dc.description.abstract | Reviewer selection in modern code review is crucial for effective code reviews. Several techniques exist for recommending reviewers appropriate for a given pull request (PR). Most code reviewer recommendation techniques in the literature build and evaluate their models based on datasets collected from real projects using open-source or industrial practices. The techniques invariably presume that these datasets reliably represent the “ground truth.” In the context of a classification problem, ground truth refers to the objectively correct labels of a class used to build models from a dataset or evaluate a model’s performance. In a project dataset used to build a code reviewer recommendation system, the recommended code reviewer picked for a PR is usually assumed to be the best code reviewer for that PR. However, in practice, the recommended code reviewer may not be the best possible code reviewer, or even a qualified one. Recent code reviewer recommendation studies suggest that the datasets used tend to suffer from systematic labeling bias, making the ground truth unreliable. Therefore, models and recommendation systems built on such datasets may perform poorly in real practice. In this study, we introduce a novel approach to automatically detect and eliminate systematic labeling bias in code reviewer recommendation systems. The bias that we remove results from selecting reviewers that do not ensure a permanently successful fix for a bug-related PR. To demonstrate the effectiveness of our approach, we evaluated it on two open-source project datasets —HIVE and QT Creator— and with five code reviewer recommendation techniques —Profile-Based, RSTrace, Naive Bayes, k-NN, and Decision Tree. Our debiasing approach appears promising since it improved the Mean Reciprocal Rank (MRR) of the evaluated techniques up to 26% in the datasets used. | en_US |
dc.description.provenance | Submitted by Betül Özen (ozen@bilkent.edu.tr) on 2022-02-03T06:08:29Z No. of bitstreams: 1 Detection_and_Elimination_of_Systematic_Labeling_Bias_in_Code_Reviewer_Recommendation_Systems.pdf: 1283429 bytes, checksum: 32ef700fe268d1cd66681494646b82ef (MD5) | en |
dc.description.provenance | Made available in DSpace on 2022-02-03T06:08:29Z (GMT). No. of bitstreams: 1 Detection_and_Elimination_of_Systematic_Labeling_Bias_in_Code_Reviewer_Recommendation_Systems.pdf: 1283429 bytes, checksum: 32ef700fe268d1cd66681494646b82ef (MD5) Previous issue date: 2021-06-21 | en |
dc.identifier.doi | 10.1145/3463274.3463336 | en_US |
dc.identifier.isbn | 978-145039053-8 | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/76981 | en_US |
dc.language.iso | English | en_US |
dc.publisher | Association for Computing Machinery | en_US |
dc.relation.isversionof | https://doi.org/10.1145/3463274.3463336 | en_US |
dc.source.title | EASE 2021: Evaluation and Assessment in Software Engineering | en_US |
dc.subject | Modern code review | en_US |
dc.subject | Ground truth | en_US |
dc.subject | Labeling bias elimination | en_US |
dc.subject | Systematic labeling bias | en_US |
dc.subject | Data cleaning | en_US |
dc.subject | Code review recommendation | en_US |
dc.title | Detection and elimination of systematic labeling bias in code reviewer recommendation systems | en_US |
dc.type | Conference Paper | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Detection_and_Elimination_of_Systematic_Labeling_Bias_in_Code_Reviewer_Recommendation_Systems.pdf
- Size:
- 1.22 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.69 KB
- Format:
- Item-specific license agreed upon to submission
- Description: