Quadrupedal bounding with an actuated spinal joint
Date
Authors
Advisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Abstract
Most legged vertebrates use flexible spines and supporting muscles to provide auxiliary power and dexterity for dynamic behaviors, resulting in higher speeds and additional maneuverability during locomotion. However, most existing legged robots capable of dynamic locomotion incorporate only a single rigid trunk with actuation limited to legs and associated joints. In this paper, we investigate how quadrupedal bounding can be achieved in the presence of an actuated spinal joint and characterize associated performance improvements compared to bounding with a rigid robot body. In the context of both a new controller structure for bounding with a body joint and existing bounding controllers for the rigid trunk, we use optimization methods to identify the highest performance gait parameters and establish that the spinal joint allows increased forward speeds and hopping heights. © 2011 IEEE.