Stabilization of higher order Schrödinger equations on a finite interval: part II

Date

2021-07

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Evolution Equations and Control Theory

Print ISSN

2163-2472

Electronic ISSN

2163-2480

Publisher

AIMS Press

Volume

Issue

Pages

1 - 62

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
4
views
2
downloads

Series

Abstract

Backstepping based controller and observer models were designed for higher order linear and nonlinear Schrödinger equations on a finite interval in [3] where the controller was assumed to be acting from the left endpoint of the medium. In this companion paper, we further the analysis by considering boundary controller(s) acting at the right endpoint of the domain. It turns out that the problem is more challenging in this scenario as the associated boundary value problem for the backstepping kernel becomes overdetermined and lacks a smooth solution. The latter is essential to switch back and forth between the original plant and the so called target system. To overcome this difficulty we rely on the strategy of using an imperfect kernel, namely one of the boundary conditions in kernel PDE model is disregarded. The drawback is that one loses rapid stabilization in comparison with the left endpoint controllability. Nevertheless, the exponential decay of the L2-norm with a certain rate still holds. The observer design is associated with new challenges from the point of view of wellposedness and one has to prove smoothing properties for an associated initial boundary value problem with inhomogeneous boundary data. This problem is solved by using Laplace transform in time. However, the Bromwich integral that inverts the transformed solution is associated with certain analyticity issues which are treated through a subtle analysis. Numerical algorithms and simulations verifying the theoretical results are given.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)