Efficient online training algorithms for recurrent neural networks

Available
The embargo period has ended, and this item is now available.

Date

2020-12

Editor(s)

Advisor

Kozat, Süleyman Serdar

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
1
views
35
downloads

Series

Abstract

Recurrent Neural Networks (RNNs) are widely used for online regression due to their ability to learn nonlinear temporal dependencies. As an RNN model, Long-Short-Term-Memory Networks (LSTMs) are commonly preferred in prac-tice, since these networks are capable of learning long-term dependencies while avoiding the exploding gradient problem. On the other hand, the performance improvement of LSTMs usually comes with the price of their large parameter size, which makes their training significantly demanding in terms of computational and data requirements. In this thesis, we address the computational challenges of LSTM training. We introduce two training algorithms, designed for obtaining the online regression performance of LSTMs with less computational requirements than the state-of-the-art. The introduced algorithms are truly online, i.e., they do not assume any underlying data generating process and future information, except that the dataset is bounded. We discuss theoretical guarantees of the introduced algo-rithms, along with their asymptotic convergence behavior. Finally, we demon-strate their performance through extensive numerical studies on real and synthetic datasets, and show that they achieve the regression performance of LSTMs with significantly shorter training times.

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)