PO-MLFMA hybrid technique for the solution of electromagnetic scattering problems involving complex targets

Date
2007
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Proceedings of the 2nd European Conference on Antennas and Propagation, EuCAP 2007
Print ISSN
Electronic ISSN
Publisher
Institution of Engineering and Technology
Volume
2007
Issue
11961
Pages
Language
English
Type
Conference Paper
Journal Title
Journal ISSN
Volume Title
Series
Abstract

The multilevel fast multipole algorithm (MLFMA) is a powerful tool for efficient and accurate solutions of electromagnetic scattering problems involving large and complicated structures. On the other hand, it is still desirable to increase the efficiency of the solutions further by combining the MLFMA implementations with the high- frequency techniques such as the physical optics (PO). In this paper, we present our efforts in order to reduce the computational cost of the MLFMA solutions by introducing PO currents appropriately on the scatterer. Since PO is valid only on smooth and large surfaces that are illuminated strongly by the incident fields, accurate solutions require careful choices of the PO and MLFMA regions. Our hybrid technique is useful especially when multiple solutions are required for different frequencies, illuminations, and scenarios, so that the direct solutions with MLFMA become expensive. For these problems, we easily accelerate the MLFMA solutions by systematically introducing the PO currents and reducing the matrix dimensions without sacrificing the accuracy.

Course
Other identifiers
Book Title
Keywords
Hybrid techniques, Multilevel fast multipole algorithm (MLFMA), Physical optics (PO), Complex targets, Complicated structures, Computational costs, Different frequency, Direct solution, Electromagnetic scattering, Radar cross section (RCS)
Citation
Published Version (Please cite this version)