The noether map i
dc.citation.epage | 578 | en_US |
dc.citation.issueNumber | 4 | en_US |
dc.citation.spage | 567 | en_US |
dc.citation.volumeNumber | 21 | en_US |
dc.contributor.author | Neusel, M. D. | en_US |
dc.contributor.author | Sezer, M. | en_US |
dc.date.accessioned | 2016-02-08T10:03:37Z | |
dc.date.available | 2016-02-08T10:03:37Z | |
dc.date.issued | 2009 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | Let æ : G GL(n, F) be a faithful representation of a finite group G. In this paper we study the image of the associated Noether map J G G : F[V(G)]G → F [V]G. It turns out that the image of the Noether map characterizes the ring of invariants in the sense that its integral closure Im (JG G = F [V]G. This is true without any restrictions on the group, representation, or ground field. Moreover, we show that the extension Im(J G G) ⊆ F [V]G is a finite p-root extension if the characteristic of the ground field is p. Furthermore, we show that the Noether map is surjective, if V = Fn is a projective FG-module. We apply these results and obtain upper bounds on the degrees of a minimal generating set of FVG and the Cohen-Macaulay defect of FV G. We illustrate our results with several examples. © de Gruyter 2009. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T10:03:37Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2009 | en |
dc.identifier.doi | 10.1515/FORUM.2009.028 | en_US |
dc.identifier.eissn | 1435-5337 | |
dc.identifier.issn | 0933-7741 | |
dc.identifier.uri | http://hdl.handle.net/11693/22700 | |
dc.language.iso | English | en_US |
dc.publisher | Walter de Gruyter GmbH | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1515/FORUM.2009.028 | en_US |
dc.source.title | Forum Mathematicum | en_US |
dc.title | The noether map i | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- The_Noether_Map_I.pdf
- Size:
- 134.03 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version