A genuinely polynomial primal simplex algorithm for the assignment problem
dc.citation.epage | 115 | en_US |
dc.citation.issueNumber | 2 | en_US |
dc.citation.spage | 93 | en_US |
dc.citation.volumeNumber | 45 | en_US |
dc.contributor.author | Akgül, M. | en_US |
dc.date.accessioned | 2016-02-08T10:54:05Z | |
dc.date.available | 2016-02-08T10:54:05Z | en_US |
dc.date.issued | 1993 | en_US |
dc.department | Department of Industrial Engineering | en_US |
dc.description.abstract | We present a primal simplex algorithm that solves the assignment problem in 1 2n(n+3)-4 pivots. Starting with a problem of size 1, we sequentially solve problems of size 2,3,4,...,n. The algorithm utilizes degeneracy by working with strongly feasible trees and employs Dantzig's rule for entering edges for the subproblem. The number of nondegenerate simplex pivots is bounded by n-1. The number of consecutive degenerate simplex pivots is bounded by 1 2(n-2)(n+1). All three bounds are sharp. The algorithm can be implemented to run in O(n3) time for dense graphs. For sparse graphs, using state of the art data structures, it runs in O(n2 log n+nm) time, where the bipartite graph has 2n nodes and m edges. © 1993. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T10:54:05Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 1993 | en_US |
dc.identifier.doi | 10.1016/0166-218X(93)90054-R | en_US |
dc.identifier.eissn | 1872-6771 | |
dc.identifier.issn | 0166-218X | |
dc.identifier.uri | http://hdl.handle.net/11693/26037 | en_US |
dc.language.iso | English | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1016/0166-218X(93)90054-R | en_US |
dc.source.title | Discrete Applied Mathematics | en_US |
dc.subject | Assignment problem | en_US |
dc.subject | Hirsch conjecture | en_US |
dc.subject | Linear programming | en_US |
dc.subject | Network simplex method | en_US |
dc.subject | Polynomial algorithms | en_US |
dc.subject | Strongly feasible bases | en_US |
dc.title | A genuinely polynomial primal simplex algorithm for the assignment problem | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- A genuinely polynomial primal simplex algorithm for the assignment problem.pdf
- Size:
- 1.44 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version