Monomial curves and the Cohen-Macaulayness of their tangent cones

Date

1999

Editor(s)

Advisor

Sertöz, Sinan

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
2
views
31
downloads

Series

Abstract

In this thesis, we show that in affine /-space with / > 4, there are monomial curves with arbitrarily large minimal number of generators of the tangent cone and still having Cohen-Macaulay tangent cone. In order to prove this result, we give complete descriptions of the defining ideals of infinitely many families of monomial curves. We determine the tangent cones of these families of curves and check the Cohen-Macaulayness of their tangent cones by using Grobner theory. Also, we compute the Hilbert functions of these families of monomial curves. Finally, we make some genus computations by using the Hilbert polynomials for complete intersections in projective case and by using Riemann-Hurwitz formula for complete intersection curves of superelliptic type.

Course

Other identifiers

Book Title

Degree Discipline

Mathematics

Degree Level

Doctoral

Degree Name

Ph.D. (Doctor of Philosophy)

Citation

Published Version (Please cite this version)