Irreducible plane sextics with large fundamental groups

dc.citation.epage1169en_US
dc.citation.issueNumber4en_US
dc.citation.spage1131en_US
dc.citation.volumeNumber61en_US
dc.contributor.authorDegtyarev, A.en_US
dc.date.accessioned2016-02-08T10:02:15Z
dc.date.available2016-02-08T10:02:15Z
dc.date.issued2009en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractWe compute the fundamental group of the complement of each irreducible sextic of weight eight or nine (in a sense, the largest groups for irreducible sextics), as well as of 169 of their derivatives (both of and not of torus type). We also give a detailed geometric description of sextics of weight eight and nine and of their moduli spaces and compute their Alexander modules; the latter are shown to be free over an appropriate ring. © 2009 The Mathematical Society of Japan.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:02:15Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2009en
dc.identifier.doi10.2969/jmsj/06141131en_US
dc.identifier.eissn1881-1167
dc.identifier.issn0025-5645
dc.identifier.urihttp://hdl.handle.net/11693/22599
dc.language.isoEnglishen_US
dc.publisherJapan Society of Mathematical Education,Nippon Sugaku Kyoiku Gakkaien_US
dc.relation.isversionof10.2969/jmsj/06141131en_US
dc.source.titleJournal of the Mathematical Society of Japanen_US
dc.subjectFundamental groupen_US
dc.subjectPlane sexticen_US
dc.subjectTorus typeen_US
dc.subjectTrigonal curveen_US
dc.titleIrreducible plane sextics with large fundamental groupsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Irreducible_plane_sextics_with_large_fundamental_groups.pdf
Size:
323.48 KB
Format:
Adobe Portable Document Format
Description:
Full printable version