An augmented crowd simulation system using automatic determination of navigable areas
buir.contributor.author | Doğan, Yalım | |
buir.contributor.author | Sonlu, Sinan | |
buir.contributor.author | Güdükbay, Uğur | |
buir.contributor.orcid | Doğan, Yalım|0000-0002-0814-2439 | |
buir.contributor.orcid | Sonlu, Sinan|0000-0002-9743-6833 | |
buir.contributor.orcid | Güdükbay, Uğur|0000-0003-2462-6959 | |
dc.citation.epage | 155 | en_US |
dc.citation.spage | 141 | en_US |
dc.citation.volumeNumber | 95 | en_US |
dc.contributor.author | Doğan, Yalım | |
dc.contributor.author | Sonlu, Sinan | |
dc.contributor.author | Güdükbay, Uğur | |
dc.date.accessioned | 2022-02-01T14:04:31Z | |
dc.date.available | 2022-02-01T14:04:31Z | |
dc.date.issued | 2021-04 | |
dc.department | Department of Computer Engineering | en_US |
dc.description.abstract | Crowd simulations imitate the group dynamics of individuals in different environments. Applications in entertainment, security, and education require augmenting simulated crowds into videos of real people. In such cases, virtual agents should realistically interact with the environment and the people in the video. One component of this augmentation task is determining the navigable regions in the video. In this work, we utilize semantic segmentation and pedestrian detection to automatically locate and reconstruct the navigable regions of surveillance-like videos. We place the resulting flat mesh into our 3D crowd simulation environment to integrate virtual agents that navigate inside the video avoiding collision with real pedestrians and other virtual agents. We report the performance of our open-source system using real-life surveillance videos, based on the accuracy of the automatically determined navigable regions and camera configuration. We show that our system generates accurate navigable regions for realistic augmented crowd simulations. | en_US |
dc.description.provenance | Submitted by Samet Emre (samet.emre@bilkent.edu.tr) on 2022-02-01T14:04:31Z No. of bitstreams: 1 An_augmented_crowd_simulation_system_using_automatic_determination_of_navigable_areas.pdf: 861855 bytes, checksum: d5e8551a19eb56e204c83796e0dec12c (MD5) | en |
dc.description.provenance | Made available in DSpace on 2022-02-01T14:04:31Z (GMT). No. of bitstreams: 1 An_augmented_crowd_simulation_system_using_automatic_determination_of_navigable_areas.pdf: 861855 bytes, checksum: d5e8551a19eb56e204c83796e0dec12c (MD5) Previous issue date: 2021-04 | en |
dc.embargo.release | 2023-04-30 | |
dc.identifier.doi | 10.1016/j.cag.2021.01.012 | en_US |
dc.identifier.issn | 0097-8493 | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/76956 | en_US |
dc.language.iso | English | en_US |
dc.publisher | Elsevier Ltd | en_US |
dc.relation.isversionof | https://doi.org/10.1016/j.cag.2021.01.012 | en_US |
dc.source.title | Computers & Graphics | en_US |
dc.subject | Pedestrian detection and tracking | en_US |
dc.subject | Data-driven simulation | en_US |
dc.subject | Three-dimensional reconstruction | en_US |
dc.subject | Crowd simulation | en_US |
dc.subject | Augmented reality | en_US |
dc.subject | Deep learning | en_US |
dc.title | An augmented crowd simulation system using automatic determination of navigable areas | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- An_augmented_crowd_simulation_system_using_automatic_determination_of_navigable_areas.pdf
- Size:
- 841.66 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.69 KB
- Format:
- Item-specific license agreed upon to submission
- Description: