Fast insect damage detection in wheat kernels using transmittance images
dc.citation.epage | 1346 | en_US |
dc.citation.spage | 1343 | en_US |
dc.contributor.author | Çataltepe, Z. | en_US |
dc.contributor.author | Pearson, T. | en_US |
dc.contributor.author | Cetin, A. Enis | en_US |
dc.coverage.spatial | Budapest, Hungary | |
dc.date.accessioned | 2016-02-08T11:53:07Z | |
dc.date.available | 2016-02-08T11:53:07Z | |
dc.date.issued | 2004-07 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description | Date of Conference: 25-29 July 2004 | |
dc.description | Conference name: 2004 IEEE International Joint Conference on Neural Networks | |
dc.description.abstract | We used transmittance images and different learning algorithms to classify insect damaged and un-damaged wheat kernels. Using the histogram of the pixels of the wheat images as the feature, and the linear model as the learning algorithm, we achieved a False Positive Rate (1-specificity) of 0.12 at the True Positive Rate (sensitivity) of 0.8 and an Area Under the ROC Curve (AUC) of 0.90 ± 0.02. Combining the linear model and a Radial Basis Function Network in a committee resulted in a FP Rate of 0.09 at the TP Rate of 0.8 and an AUC of 0.93 ± 0.03. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T11:53:07Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2004 | en |
dc.identifier.doi | 10.1109/IJCNN.2004.1380142 | en_US |
dc.identifier.issn | 1098-7576 | |
dc.identifier.uri | http://hdl.handle.net/11693/27428 | |
dc.language.iso | English | en_US |
dc.publisher | IEEE | |
dc.relation.isversionof | http://dx.doi.org/10.1109/IJCNN.2004.1380142 | en_US |
dc.source.title | IEEE International Conference on Neural Networks - Conference Proceedings | en_US |
dc.subject | Insect detection | en_US |
dc.subject | Learning methods | en_US |
dc.subject | Transmittance images | en_US |
dc.subject | Wheat kernels | en_US |
dc.subject | Correlation methods | en_US |
dc.subject | Crops | en_US |
dc.subject | Feature extraction | en_US |
dc.subject | Independent component analysis | en_US |
dc.subject | Insect control | en_US |
dc.subject | Learning algorithms | en_US |
dc.subject | Mathematical models | en_US |
dc.subject | Principal component analysis | en_US |
dc.subject | Radial basis function networks | en_US |
dc.subject | Image processing | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Correlation | en_US |
dc.subject | Image analysis | en_US |
dc.subject | Mathematical models | en_US |
dc.subject | Wheat | en_US |
dc.title | Fast insect damage detection in wheat kernels using transmittance images | en_US |
dc.type | Conference Paper | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Fast insect damage detection in wheat kernels using transmittance images.pdf
- Size:
- 292.36 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version