İstatistiksel örüntü tanıma teknikleri kullanarak kızılberisi algılayıcılarla hedef ayırdetme
dc.citation.epage | 4 | en_US |
dc.citation.spage | 1 | en_US |
dc.contributor.author | Aytaç, Tayfun | en_US |
dc.contributor.author | Yüzbaşıoǧlu, Çağrı | en_US |
dc.contributor.author | Barshan, Billur | en_US |
dc.coverage.spatial | Antalya, Turkey | |
dc.date.accessioned | 2016-02-08T11:45:53Z | |
dc.date.available | 2016-02-08T11:45:53Z | |
dc.date.issued | 2006-04 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description | Date of Conference: 17-19 April 2006 | |
dc.description | Conference name: 2006 IEEE 14th Signal Processing and Communications Applications | |
dc.description.abstract | This study compares the performances of different statistical pattern recognition techniques to differentiation of commonly encountered features or targets in indoor environments, such as planes, corners, edges, and cylinders, using low-cost infrared sensors. The pattern recognition techniques compared include parametric density estimation, mixture of Gaussians, kernel estimator, k-nearest neighbor classifier, neural network classifier, and support vector machine classifier. A correct differentiation rate of 100% is achieved for six surfaces using parametric differentiation. For three geometries covered with seven different surfaces, best correct differentiation rate (100%) is achieved with mixture of Gaussians classifier with three components. The results demonstrate that simple infrared sensors, when coupled with appropriate processing, can be used to extract substantially more information than such devices are commonly employed. © 2006 IEEE. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T11:45:53Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2006 | en |
dc.identifier.doi | 10.1109/SIU.2006.1659804 | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/27148 | |
dc.language.iso | Turkish | en_US |
dc.publisher | IEEE | |
dc.relation.isversionof | http://dx.doi.org/10.1109/SIU.2006.1659804 | en_US |
dc.source.title | 2006 IEEE 14th Signal Processing and Communications Applications Conference | en_US |
dc.subject | Gaussians classifiers | en_US |
dc.subject | Infrared sensors | en_US |
dc.subject | Parametric density estimation | en_US |
dc.subject | Parametric differentiation | en_US |
dc.subject | Statistical pattern recognition | en_US |
dc.subject | Image analysis | en_US |
dc.subject | Pattern recognition | en_US |
dc.subject | Probability distributions | en_US |
dc.subject | Statistical methods | en_US |
dc.subject | Temperature sensors | en_US |
dc.subject | Target tracking | en_US |
dc.title | İstatistiksel örüntü tanıma teknikleri kullanarak kızılberisi algılayıcılarla hedef ayırdetme | en_US |
dc.title.alternative | Target differentiation with infrared sensors using statistical pattern recognition techniques | en_US |
dc.type | Conference Paper | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Target differentiation with infrared sensors using statistical pattern recognition techniques [İstatistiksel örüntü tanima teknikleri kullanarak kizilberisi algilayicilarla hedef ayirdetme].pdf
- Size:
- 1.21 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version