Widom Factors
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Attention Stats
Usage Stats
views
downloads
Series
Abstract
In this thesis we recall classical results on Chebyshev polynomials and logarithmic capacity. Given a non-polar compact set K, we define the n-th Widom factor Wn(K) as the ratio of the sup-norm of the n-th Chebyshev polynomial on K to the n-th degree of its logarithmic capacity. We consider results on estimations of Widom factors. By means of weakly equilibrium Cantor-type sets, K(γ), we prove new results on behavior of the sequence (Wn(K))∞ n=1.By K. Schiefermayr[1], Wn(K) ≥ 2 for any non-polar compact K ⊂ R. We prove that the theoretical lower bound 2 for compact sets on the real line can be achieved by W2s (K(γ)) as fast as we wish. By G. Szeg˝o[2], rate of the sequence (Wn(K))∞ n=1 is slower than exponential growth. We show that there are sets with unbounded (Wn(K))∞ n=1 and moreoverfor each sequence (Mn)∞ n=1 of subexponential growth there is a Cantor-type set which Widom factors exceed Mn for infinitely many n. By N.I. Achieser[3][4], limit of the sequence (Wn(K))∞ n=1 does not exist in the case K consists of two disjoint intervals. In general the sequence (Wn(K))∞ n=1 may behave highly irregular. We illustrate this behavior by constructing a Cantor-type set K such that one subsequence of (Wn(K))∞ n=1 converges as fast as we wish to the theoretical lower bound 2, whereas another subsequence exceeds any sequence (Mn)∞ n=1 of subexponential growth given beforehand