Widom Factors

Date

2014

Editor(s)

Advisor

Goncharov, Alexander

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
2
views
28
downloads

Series

Abstract

In this thesis we recall classical results on Chebyshev polynomials and logarithmic capacity. Given a non-polar compact set K, we define the n-th Widom factor Wn(K) as the ratio of the sup-norm of the n-th Chebyshev polynomial on K to the n-th degree of its logarithmic capacity. We consider results on estimations of Widom factors. By means of weakly equilibrium Cantor-type sets, K(γ), we prove new results on behavior of the sequence (Wn(K))∞ n=1.By K. Schiefermayr[1], Wn(K) ≥ 2 for any non-polar compact K ⊂ R. We prove that the theoretical lower bound 2 for compact sets on the real line can be achieved by W2s (K(γ)) as fast as we wish. By G. Szeg˝o[2], rate of the sequence (Wn(K))∞ n=1 is slower than exponential growth. We show that there are sets with unbounded (Wn(K))∞ n=1 and moreoverfor each sequence (Mn)∞ n=1 of subexponential growth there is a Cantor-type set which Widom factors exceed Mn for infinitely many n. By N.I. Achieser[3][4], limit of the sequence (Wn(K))∞ n=1 does not exist in the case K consists of two disjoint intervals. In general the sequence (Wn(K))∞ n=1 may behave highly irregular. We illustrate this behavior by constructing a Cantor-type set K such that one subsequence of (Wn(K))∞ n=1 converges as fast as we wish to the theoretical lower bound 2, whereas another subsequence exceeds any sequence (Mn)∞ n=1 of subexponential growth given beforehand

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Mathematics

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type