On the accuracy of uniform polyhedral approximations of the copositive cone

Date

2012

Authors

Yıldırım, A.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Optimization Methods and Software

Print ISSN

1055-6788

Electronic ISSN

1029-4937

Publisher

Taylor & Francis

Volume

27

Issue

1

Pages

155 - 173

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
1
views
42
downloads

Series

Abstract

We consider linear optimization problems over the cone of copositive matrices. Such conic optimization problems, called copositive programs, arise from the reformulation of a wide variety of difficult optimization problems. We propose a hierarchy of increasingly better outer polyhedral approximations to the copositive cone. We establish that the sequence of approximations is exact in the limit. By combining our outer polyhedral approximations with the inner polyhedral approximations due to de Klerk and Pasechnik [SIAM J. Optim. 12 (2002), pp. 875-892], we obtain a sequence of increasingly sharper lower and upper bounds on the optimal value of a copositive program. Under primal and dual regularity assumptions, we establish that both sequences converge to the optimal value. For standard quadratic optimization problems, we derive tight bounds on the gap between the upper and lower bounds. We provide closed-form expressions of the bounds for the maximum stable set problem. Our computational results shed light on the quality of the bounds on randomly generated instances.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)