Modular vector invariants

buir.advisorKlyachko, Alexander
dc.contributor.authorMadran, Uğur
dc.date.accessioned2016-07-01T11:07:28Z
dc.date.available2016-07-01T11:07:28Z
dc.date.issued2006
dc.descriptionCataloged from PDF version of article.en_US
dc.description.abstractVector invariants of finite groups (see the introduction for definitions) provides, in general, counterexamples for many properties of the invariant theory when the characteristic of the ground field divides the group order. Noether number is such property. In this thesis, we improve a lower bound for Noether number given by Richman in 1996: namely, we give a lower bound depending on the Jordan canonical form of an element of order equal to characteristic of the field. This method yields an effective bound by means of simple arithmetic arguments. The results are valid for any faithful representation of the group, including reducible and irreducible ones. Also they are extended to any algebraic field extensions provided the characteristic of the field divides the group order.en_US
dc.description.provenanceMade available in DSpace on 2016-07-01T11:07:28Z (GMT). No. of bitstreams: 1 0003151.pdf: 331556 bytes, checksum: cf8f5e0f2cb2fb8e9f245ec4fb1707b0 (MD5) Previous issue date: 2006en
dc.description.statementofresponsibilityMadran, Uğuren_US
dc.format.extentix, 38 leavesen_US
dc.identifier.itemidBILKUTUPB099999
dc.identifier.urihttp://hdl.handle.net/11693/29862
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectModular invariantsen_US
dc.subjectPolynomial invariantsen_US
dc.subjectVector invariantsen_US
dc.subjectNoether numberen_US
dc.subjectBeta numberen_US
dc.subject.lccQA171 .M34 2006en_US
dc.subject.lcshModular representations of group.en_US
dc.titleModular vector invariantsen_US
dc.typeThesisen_US
thesis.degree.disciplineMathematics
thesis.degree.grantorBilkent University
thesis.degree.levelDoctoral
thesis.degree.namePh.D. (Doctor of Philosophy)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0003151.pdf
Size:
323.79 KB
Format:
Adobe Portable Document Format
Description:
Full printable version