Scene classification using bag-of-regions representations

Date

2007-06

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition

Print ISSN

Electronic ISSN

Publisher

IEEE

Volume

Issue

Pages

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
1
views
23
downloads

Series

Abstract

This paper describes our work on classification of outdoor scenes. First, images are partitioned into regions using one-class classification and patch-based clustering algorithms where one-class classifiers model the regions with relatively uniform color and texture properties, and clustering of patches aims to detect structures in the remaining regions. Next, the resulting regions are clustered to obtain a codebook of region types, and two models are constructed for scene representation: a "bag of individual regions" representation where each region is regarded separately, and a "bag of region pairs" representation where regions with particular spatial relationships are considered, together. Given these representations, scene classification is done using Bayesian classifiers. We also propose a novel region selection algorithm that identifies region types that are frequently found in a particular class of scenes but rarely exist in other classes, and also consistently occur together in the same class of scenes. Experiments on the LabelMe data set showed that the proposed models significantly out-perform a baseline global feature-based approach. © 2007 IEEE.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)