Reproducing kernel Hilbert spaces

buir.advisorGheondea, Aurelian
dc.contributor.authorOkutmuştur, Baver
dc.date.accessioned2016-07-01T11:04:01Z
dc.date.available2016-07-01T11:04:01Z
dc.date.issued2005
dc.descriptionCataloged from PDF version of article.en_US
dc.description.abstractIn this thesis we make a survey of the theory of reproducing kernel Hilbert spaces associated with positive definite kernels and we illustrate their applications for interpolation problems of Nevanlinna-Pick type. Firstly we focus on the properties of reproducing kernel Hilbert spaces, generation of new spaces and relationships between their kernels and some theorems on extensions of functions and kernels. One of the most useful reproducing kernel Hilbert spaces, the Bergman space, is studied in details in chapter 3. After giving a brief definition of Hardy spaces, we dedicate the last part for applications of interpolation problems of NevanlinnaPick type with three main theorems: interpolation with a finite number of points, interpolation with an infinite number of points and interpolation with points on the boundary. Finally we include an Appendix that contains a brief recall of the main results from functional analysis and operator theory.en_US
dc.description.provenanceMade available in DSpace on 2016-07-01T11:04:01Z (GMT). No. of bitstreams: 1 0002953.pdf: 565048 bytes, checksum: 4da78710b8779e2fb468005eb40c860f (MD5) Previous issue date: 2005en
dc.description.statementofresponsibilityOkutmuştur, Baveren_US
dc.format.extentvii, 98 leavesen_US
dc.identifier.itemidBILKUTUPB094305
dc.identifier.urihttp://hdl.handle.net/11693/29722
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectReproducing kernelen_US
dc.subjectReproducing kernel Hilbert spacesen_US
dc.subjectBergman spacesen_US
dc.subjectHardy spacesen_US
dc.subjectInterpolationen_US
dc.subjectRiesz theoremen_US
dc.subject.lccQA322 .O38 2005en_US
dc.subject.lcshHilbert space.en_US
dc.titleReproducing kernel Hilbert spacesen_US
dc.typeThesisen_US
thesis.degree.disciplineMathematics
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0002953.pdf
Size:
551.8 KB
Format:
Adobe Portable Document Format
Description:
Full printable version