Widom factors

dc.citation.epage680en_US
dc.citation.issueNumber3en_US
dc.citation.spage671en_US
dc.citation.volumeNumber42en_US
dc.contributor.authorGoncharov, A.en_US
dc.contributor.authorHatinoğlu, B.en_US
dc.date.accessioned2016-02-08T09:56:26Z
dc.date.available2016-02-08T09:56:26Z
dc.date.issued2015en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractGiven a non-polar compact set K,we define the n-th Widom factor W<inf>n</inf>(K) as the ratio of the sup-norm of the n-th Chebyshev polynomial on K to the n-th degree of its logarithmic capacity. By G. Szegő, the sequence (Formula presented.) has subexponential growth. Our aim is to consider compact sets with maximal growth of the Widom factors. We show that for each sequence (Formula presented.) of subexponential growth there is a Cantor-type set whose Widom’s factors exceed M<inf>n</inf>. We also present a set K with highly irregular behavior of the Widom factors.en_US
dc.identifier.doi10.1007/s11118-014-9452-3en_US
dc.identifier.eissn1572-929Xen_US
dc.identifier.issn0926-2601en_US
dc.identifier.urihttp://hdl.handle.net/11693/22170
dc.language.isoEnglishen_US
dc.publisherSpringer Netherlandsen_US
dc.relation.isversionofhttps://doi.org/10.1007/s11118-014-9452-3en_US
dc.source.titleLogarithmic capacityen_US
dc.subjectChebyshev numbersen_US
dc.subjectCantor setsen_US
dc.titleWidom factorsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Widom Factors.pdf
Size:
196.02 KB
Format:
Adobe Portable Document Format
Description:
Full printable version