A machine learning approach for result caching in web search engines

buir.contributor.authorAykanat, Cevdet
dc.citation.epage850en_US
dc.citation.issueNumber4en_US
dc.citation.spage834en_US
dc.citation.volumeNumber53en_US
dc.contributor.authorKucukyilmaz T.en_US
dc.contributor.authorCambazoglu, B. B.en_US
dc.contributor.authorAykanat, Cevdeten_US
dc.contributor.authorBaeza-Yates R.en_US
dc.date.accessioned2018-04-12T11:11:41Z
dc.date.available2018-04-12T11:11:41Z
dc.date.issued2017en_US
dc.departmentDepartment of Computer Engineeringen_US
dc.description.abstractA commonly used technique for improving search engine performance is result caching. In result caching, precomputed results (e.g., URLs and snippets of best matching pages) of certain queries are stored in a fast-access storage. The future occurrences of a query whose results are already stored in the cache can be directly served by the result cache, eliminating the need to process the query using costly computing resources. Although other performance metrics are possible, the main performance metric for evaluating the success of a result cache is hit rate. In this work, we present a machine learning approach to improve the hit rate of a result cache by facilitating a large number of features extracted from search engine query logs. We then apply the proposed machine learning approach to static, dynamic, and static-dynamic caching. Compared to the previous methods in the literature, the proposed approach improves the hit rate of the result cache up to 0.66%, which corresponds to 9.60% of the potential room for improvement. © 2017 Elsevier Ltden_US
dc.description.provenanceMade available in DSpace on 2018-04-12T11:11:41Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017en
dc.embargo.release2019-07-01en_US
dc.identifier.doi10.1016/j.ipm.2017.02.006en_US
dc.identifier.issn0306-4573en_US
dc.identifier.urihttp://hdl.handle.net/11693/37374en_US
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.ipm.2017.02.006en_US
dc.source.titleInformation Processing and Managementen_US
dc.subjectFeature-based cachingen_US
dc.subjectMachine learningen_US
dc.subjectQuery result cachingen_US
dc.subjectStatic cachingen_US
dc.subjectStatic-dynamic cachingen_US
dc.subjectArtificial intelligenceen_US
dc.subjectInformation retrievalen_US
dc.subjectSearch enginesen_US
dc.subjectFeature-baseden_US
dc.subjectMachine learning approachesen_US
dc.subjectPerformance metricsen_US
dc.subjectQuery resultsen_US
dc.subjectSearch engine performanceen_US
dc.subjectStatic dynamicsen_US
dc.subjectLearning systemsen_US
dc.titleA machine learning approach for result caching in web search enginesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A machine learning approach for result caching in web search engines.pdf
Size:
752.84 KB
Format:
Adobe Portable Document Format
Description:
Full printable version