Parallel preconditioners for solutions of dense linear systems with tens of millions of unknowns

buir.contributor.authorGürel, Levent
buir.contributor.authorErgül, Özgür
dc.citation.epage402en_US
dc.citation.spage399en_US
dc.contributor.authorMalas, Tahiren_US
dc.contributor.authorErgül, Özgüren_US
dc.contributor.authorGürel, Leventen_US
dc.coverage.spatialAnkara, Turkey
dc.date.accessioned2016-02-08T11:43:28Z
dc.date.available2016-02-08T11:43:28Z
dc.date.issued2007-11en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentComputational Electromagnetics Research Center (BiLCEM)en_US
dc.descriptionDate of Conference: 7-9 Nov. 2007
dc.descriptionConference name: 22nd international symposium on computer and information sciences, 2007
dc.description.abstractWe propose novel parallel preconditioning schemes for the iterative solution of integral equation methods. In particular, we try to improve convergence rate of the ill-conditioned linear systems formulated by the electric-field integral equation, which is the only integral-equation formulation for targets having open surfaces. For moderate-size problems, iterative solution of the near-field system enables much faster convergence compared to the widely used sparse approximate inverse preconditioner. For larger systems, we propose an approximation strategy to the multilevel fast multipole algorithm (MLFMA) to be used as a preconditioner. Our numerical experiments reveal that this scheme significantly outperforms other preconditioners. With the combined effort of effective preconditioners and an efficiently parallelized MLFMA, we are able to solve targets with tens of millions of unknowns, which are the largest problems ever reported in computational electromagnetics. ©2007 IEEE.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T11:43:28Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2007en
dc.identifier.doi10.1109/ISCIS.2007.4456895en_US
dc.identifier.urihttp://hdl.handle.net/11693/27069
dc.language.isoEnglishen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ISCIS.2007.4456895en_US
dc.source.title22nd International Symposium on Computer and Information Sciences, ISCIS 2007 - Proceedingsen_US
dc.subjectApproximation algorithmsen_US
dc.subjectBoundary element methoden_US
dc.subjectCommunicationen_US
dc.subjectCyberneticsen_US
dc.subjectEigenvalues and eigenfunctionsen_US
dc.subjectElectromagnetismen_US
dc.subjectInformation managementen_US
dc.subjectInformation scienceen_US
dc.subjectInverse problemsen_US
dc.subjectIterative methodsen_US
dc.subjectLinear equationsen_US
dc.subjectLinear systemsen_US
dc.subjectMagnetismen_US
dc.subjectRadar antennasen_US
dc.subjectSolutionsen_US
dc.subjectComputational electromagnetics (CEM)en_US
dc.subjectConvergence ratesen_US
dc.subjectFaster convergenceen_US
dc.subjectField integralen_US
dc.subjectIntegral Equation Method (IEM)en_US
dc.subjectIntegral-equationen_US
dc.subjectInternational symposiumen_US
dc.subjectIterative solutionsen_US
dc.subjectMultilevel fast multipole algorithm (MLFMA)en_US
dc.subjectNear fieldsen_US
dc.subjectNumerical experimentsen_US
dc.subjectOpen surfacesen_US
dc.subjectParallel preconditionersen_US
dc.subjectParallel preconditioningen_US
dc.subjectPreconditioneren_US
dc.subjectPreconditionersen_US
dc.subjectSparse approximate inverse (SAI)en_US
dc.subjectIntegral equationsen_US
dc.titleParallel preconditioners for solutions of dense linear systems with tens of millions of unknownsen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Parallel preconditioners for solutions of dense linear systems with tens of millions of unknowns.pdf
Size:
357.16 KB
Format:
Adobe Portable Document Format
Description:
Full printable version