Adaptive mixture methods based on Bregman divergences
dc.citation.epage | 97 | en_US |
dc.citation.issueNumber | 1 | en_US |
dc.citation.spage | 86 | en_US |
dc.citation.volumeNumber | 23 | en_US |
dc.contributor.author | Donmez, M. A. | en_US |
dc.contributor.author | Inan, H. A. | en_US |
dc.contributor.author | Kozat, S. S. | en_US |
dc.date.accessioned | 2016-02-08T09:41:50Z | |
dc.date.available | 2016-02-08T09:41:50Z | |
dc.date.issued | 2013 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description.abstract | We investigate adaptive mixture methods that linearly combine outputs of m constituent filters running in parallel to model a desired signal. We use Bregman divergences and obtain certain multiplicative updates to train the linear combination weights under an affine constraint or without any constraints. We use unnormalized relative entropy and relative entropy to define two different Bregman divergences that produce an unnormalized exponentiated gradient update and a normalized exponentiated gradient update on the mixture weights, respectively. We then carry out the mean and the mean-square transient analysis of these adaptive algorithms when they are used to combine outputs of m constituent filters. We illustrate the accuracy of our results and demonstrate the effectiveness of these updates for sparse mixture systems. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T09:41:50Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2013 | en |
dc.identifier.doi | 10.1016/j.dsp.2012.09.006 | en_US |
dc.identifier.issn | 1051-2004 | |
dc.identifier.uri | http://hdl.handle.net/11693/21144 | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1016/j.dsp.2012.09.006 | en_US |
dc.source.title | Digital Signal Processing: A Review Journal | en_US |
dc.subject | Adaptive mixture | en_US |
dc.subject | Affine mixture | en_US |
dc.subject | Bregman divergence | en_US |
dc.subject | Multiplicative update | en_US |
dc.subject | Affine Constraints | en_US |
dc.subject | Bregman divergences | en_US |
dc.subject | Desired signal | en_US |
dc.subject | Linear combinations | en_US |
dc.subject | Mean-square | en_US |
dc.subject | Mixture method | en_US |
dc.subject | Multiplicative updates | en_US |
dc.subject | Relative entropy | en_US |
dc.subject | Running-in | en_US |
dc.subject | Adaptive algorithms | en_US |
dc.subject | Entropy | en_US |
dc.subject | Mixtures | en_US |
dc.title | Adaptive mixture methods based on Bregman divergences | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Adaptive mixture methods based on Bregman divergences.pdf
- Size:
- 1.61 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full Printable Version