On feckly clean rings

Date

2015

Authors

Chen, H.
Kose, H.
Kurtulmaz, Y.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
3
views
16
downloads

Citation Stats

Series

Abstract

A ring R is feckly clean provided that for any a R there exists an element e R and a full element u R such that a = e + u, eR(1 - e) J(R). We prove that a ring R is feckly clean if and only if for any a R, there exists an element e R such that V(a) V(e), V(1 - a) V(1 - e) and eR(1 - e) J(R), if and only if for any distinct maximal ideals M and N, there exists an element e R such that e M, 1 - e N and eR(1 - e) J(R), if and only if J-spec(R) is strongly zero-dimensional, if and only if Max(R) is strongly zero-dimensional and every prime ideal containing J(R) is contained in a unique maximal ideal. More explicit characterizations are also discussed for commutative feckly clean rings. © 2015 World Scientific Publishing Company.

Source Title

Journal of Algebra and its Applications

Publisher

World Scientific Publishing

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English