A Tate cohomology sequence for generalized Burnside rings

dc.citation.epage1315en_US
dc.citation.issueNumber7en_US
dc.citation.spage1306en_US
dc.citation.volumeNumber213en_US
dc.contributor.authorCoşkun O.en_US
dc.contributor.authorYalçin, E.en_US
dc.date.accessioned2016-02-08T10:03:37Z
dc.date.available2016-02-08T10:03:37Z
dc.date.issued2009en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractWe generalize the fundamental theorem for Burnside rings to the mark morphism of plus constructions defined by Boltje. The main observation is the following: If D is a restriction functor for a finite group G, then the mark morphism φ : D+ → D+ is the same as the norm map of the Tate cohomology sequence (over conjugation algebra for G) after composing with a suitable isomorphism of D+. As a consequence, we obtain an exact sequence of Mackey functors 0 → over(Ext, ̂)γ - 1 (ρ, D) → D+ over({long rightwards arrow}, φ) D+ → over(Ext, ̂)γ 0 (ρ, D) → 0 where ρ denotes the restriction algebra and γ denotes the conjugation algebra for G. Then, we show how one can calculate these Tate groups explicitly using group cohomology and give some applications to integrality conditions. © 2008 Elsevier B.V. All rights reserved.en_US
dc.identifier.doi10.1016/j.jpaa.2008.11.025en_US
dc.identifier.issn0022-4049
dc.identifier.urihttp://hdl.handle.net/11693/22701
dc.language.isoEnglishen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jpaa.2008.11.025en_US
dc.source.titleJournal of Pure and Applied Algebraen_US
dc.titleA Tate cohomology sequence for generalized Burnside ringsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A_Tate_cohomology_sequence_for_generalized_Burnside_rings.pdf
Size:
902.93 KB
Format:
Adobe Portable Document Format
Description:
Full printable version