A Tate cohomology sequence for generalized Burnside rings
dc.citation.epage | 1315 | en_US |
dc.citation.issueNumber | 7 | en_US |
dc.citation.spage | 1306 | en_US |
dc.citation.volumeNumber | 213 | en_US |
dc.contributor.author | Coşkun O. | en_US |
dc.contributor.author | Yalçin, E. | en_US |
dc.date.accessioned | 2016-02-08T10:03:37Z | |
dc.date.available | 2016-02-08T10:03:37Z | |
dc.date.issued | 2009 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | We generalize the fundamental theorem for Burnside rings to the mark morphism of plus constructions defined by Boltje. The main observation is the following: If D is a restriction functor for a finite group G, then the mark morphism φ : D+ → D+ is the same as the norm map of the Tate cohomology sequence (over conjugation algebra for G) after composing with a suitable isomorphism of D+. As a consequence, we obtain an exact sequence of Mackey functors 0 → over(Ext, ̂)γ - 1 (ρ, D) → D+ over({long rightwards arrow}, φ) D+ → over(Ext, ̂)γ 0 (ρ, D) → 0 where ρ denotes the restriction algebra and γ denotes the conjugation algebra for G. Then, we show how one can calculate these Tate groups explicitly using group cohomology and give some applications to integrality conditions. © 2008 Elsevier B.V. All rights reserved. | en_US |
dc.identifier.doi | 10.1016/j.jpaa.2008.11.025 | en_US |
dc.identifier.issn | 0022-4049 | |
dc.identifier.uri | http://hdl.handle.net/11693/22701 | |
dc.language.iso | English | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1016/j.jpaa.2008.11.025 | en_US |
dc.source.title | Journal of Pure and Applied Algebra | en_US |
dc.title | A Tate cohomology sequence for generalized Burnside rings | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- A_Tate_cohomology_sequence_for_generalized_Burnside_rings.pdf
- Size:
- 902.93 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version