Investigation of metamaterial coated conducting cylinders for achieving transparency and maximizing radar cross section

Date

2007

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Proceedings of the Antennas and Propagation Society International Symposium, IEEE 2007

Print ISSN

1522-3965

Electronic ISSN

Publisher

IEEE

Volume

Issue

Pages

857 - 860

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
2
views
21
downloads

Series

Abstract

Recently, reducing the radar cross sections (RCS) of various structures to achieve transparency and obtaining resonant structures aimed at increasing the electromagnetic intensities, stored or radiated power levels have been investigated. The transparency and resonance (RCS maximization) conditions investigated in are mainly attributed to pairing of "conjugate" materials: materials which have opposite signs of constitutive parameters [e.g., double-positive (DPS) and double- negative (DNG) or epsilon-negative (ENG) and mu-negative (MNG)]. In the present work, we extend the transparency and resonance conditions for cylindrical structures when the core cylinder is particularly perfect electric conductor (PEC). The appropriate constitutive parameters of such metamaterials are investigated for both TE and TM polarizations. For TE polarization it is found out that, the metamaterial coating permittivity has to be in the 0 < epsivc < epsiv0 interval to achieve transparency, and in the -epsiv0 < epsivc < 0 interval to achieve RCS maximization. As in the case of "conjugate" pairing, transparency and resonance are found to be heavily dependent on the ratio of core-coating radii, instead of the total size of the cylindrical structure. However, unlike the "conjugate" pairing cases, replacing epsiv by mu (and vice versa) does not lead to the same conclusions for TM polarization unless the PEC cylinder is replaced by a perfect magnetic conductor (PMC) cylinder. Yet, RCS maximization can also be achieved in the TM polarization case when coating permeability muc < 0, whereas transparency requires large \muc\ for this polarization. Numerical results, which demonstrate the transparency and RCS maximization phenomena, are given in the form of normalized monostatic and bistatic echo widths.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)