Seven tuning schemes for an ADALINE model to predict floor pressures in a subsonic cavity flow

Date

2009

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Transactions of the Institute of Measurement and Control

Print ISSN

0142-3312

Electronic ISSN

1477-0369

Publisher

Sage Publications Ltd.

Volume

31

Issue

1

Pages

97 - 112

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

This paper presents a simple yet effective one-step-ahead predictor based on an adaptive linear element (ADALINE). Several tuning schemes are studied to see whether the obtained model is consistent. The process under investigation is a subsonic cavity flow system. The experimental data obtained from the system is post-processed to obtain a useful predictor. The contribution of the paper is to demonstrate that despite the spectral richness of the observed data, a simple model with various tuning schemes can help to a satisfactory extent. Seven algorithms are studied, including the least mean squares (LMS), recursive least squares (RLS), modified Kaczmarz's algorithm (MK), stochastic approximation algorithm (SA), gradient descent (GD), Levenbergĝ€ "Marquardt optimization technique (LM) and sliding mode-based tuning (SM). The model and its properties are discussed comparatively.

Course

Other identifiers

Book Title

Citation