Real trigonal curves and real elliptic surfaces of type I

dc.citation.epage246en_US
dc.citation.spage221en_US
dc.citation.volumeNumber686en_US
dc.contributor.authorDegtyarev, A.en_US
dc.date.accessioned2015-07-28T12:04:42Z
dc.date.available2015-07-28T12:04:42Z
dc.date.issued2014en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractWe study real trigonal curves and elliptic surfaces of type I (over a base of an arbitrary genus) and their fiberwise equivariant deformations. The principal tool is a real version of Grothendieck's dessins d'enfants. We give a description of maximally inflected trigonal curves of type I in terms of the combinatorics of sufficiently simple graphs and, in the case of the rational base, obtain a complete classification of such curves. As a consequence, these results lead to conclusions concerning real Jacobian elliptic surfaces of type I with all singular fibers real. © De Gruyter 2014.en_US
dc.identifier.doi10.1515/crelle-2012-0020en_US
dc.identifier.eissn1435-5345
dc.identifier.issn0075-4102
dc.identifier.urihttp://hdl.handle.net/11693/13133
dc.language.isoEnglishen_US
dc.publisherWalter de Gruyter GmbHen_US
dc.relation.isversionofhttp://dx.doi.org/10.1515/crelle-2012-0020en_US
dc.source.titleJournal für die reine und angewandte Mathematiken_US
dc.titleReal trigonal curves and real elliptic surfaces of type Ien_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1515-crelle-2012-0020.pdf
Size:
335.71 KB
Format:
Adobe Portable Document Format
Description:
Full printable version