Real trigonal curves and real elliptic surfaces of type I
dc.citation.epage | 246 | en_US |
dc.citation.spage | 221 | en_US |
dc.citation.volumeNumber | 686 | en_US |
dc.contributor.author | Degtyarev, A. | en_US |
dc.date.accessioned | 2015-07-28T12:04:42Z | |
dc.date.available | 2015-07-28T12:04:42Z | |
dc.date.issued | 2014 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | We study real trigonal curves and elliptic surfaces of type I (over a base of an arbitrary genus) and their fiberwise equivariant deformations. The principal tool is a real version of Grothendieck's dessins d'enfants. We give a description of maximally inflected trigonal curves of type I in terms of the combinatorics of sufficiently simple graphs and, in the case of the rational base, obtain a complete classification of such curves. As a consequence, these results lead to conclusions concerning real Jacobian elliptic surfaces of type I with all singular fibers real. © De Gruyter 2014. | en_US |
dc.identifier.doi | 10.1515/crelle-2012-0020 | en_US |
dc.identifier.eissn | 1435-5345 | |
dc.identifier.issn | 0075-4102 | |
dc.identifier.uri | http://hdl.handle.net/11693/13133 | |
dc.language.iso | English | en_US |
dc.publisher | Walter de Gruyter GmbH | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1515/crelle-2012-0020 | en_US |
dc.source.title | Journal für die reine und angewandte Mathematik | en_US |
dc.title | Real trigonal curves and real elliptic surfaces of type I | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 10.1515-crelle-2012-0020.pdf
- Size:
- 335.71 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version