Applying deep learning in augmented reality tracking

dc.citation.epage54en_US
dc.citation.spage47en_US
dc.contributor.authorAkgül, Ömeren_US
dc.contributor.authorPenekli, H. I.en_US
dc.contributor.authorGenç, Y.en_US
dc.coverage.spatialNaples, Italy
dc.date.accessioned2018-04-12T11:45:21Z
dc.date.available2018-04-12T11:45:21Z
dc.date.issued2016-11-12en_US
dc.departmentDepartment of Computer Engineeringen_US
dc.descriptionDate of Conference: 28 Nov.-1 Dec. 2016
dc.descriptionConference name: 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), 2016
dc.description.abstractAn existing deep learning architecture has been adapted to solve the detection problem in camera-based tracking for augmented reality (AR). A known target, in this case a planar object, is rendered under various viewing conditions including varying orientation, scale, illumination and sensor noise. The resulting corpus is used to train a convolutional neural network to match given patches in an incoming image. The results show comparable or better performance compared to state of art methods. Timing performance of the detector needs improvement but when considered in conjunction with the robust pose estimation process promising results are shown. © 2016 IEEE.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T11:45:21Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017en
dc.identifier.doi10.1109/SITIS.2016.17en_US
dc.identifier.urihttp://hdl.handle.net/11693/37607
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttps://doi.org/10.1109/SITIS.2016.17en_US
dc.source.titleProceedings - 12th International Conference on Signal Image Technology and Internet-Based Systems, SITIS 2016en_US
dc.subjectAugmented realityen_US
dc.subjectNeural networksen_US
dc.subjectConvolutional neural networken_US
dc.subjectDetection problemsen_US
dc.subjectLearning architecturesen_US
dc.subjectMarker detectionsen_US
dc.subjectMarker trackeren_US
dc.subjectState-of-art methodsen_US
dc.subjectTiming performanceen_US
dc.subjectViewing conditionsen_US
dc.subjectDeep learningen_US
dc.titleApplying deep learning in augmented reality trackingen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Applying Deep Learning in Augmented Reality Tracking.pdf
Size:
848.13 KB
Format:
Adobe Portable Document Format
Description:
Full printable version