Oka's conjecture on irreducible plane sextics II

dc.citation.epage1080en_US
dc.citation.issueNumber8en_US
dc.citation.spage1065en_US
dc.citation.volumeNumber18en_US
dc.contributor.authorDegtyarev, A.en_US
dc.date.accessioned2016-02-08T10:03:21Z
dc.date.available2016-02-08T10:03:21Z
dc.date.issued2009en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractWe complete the proof of Oka's conjecture on the Alexander polynomial of an irreducible plane sextic. We also calculate the fundamental groups of irreducible sextics with a singular point adjacent to J10. © 2009 World Scientific Publishing Company.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:03:21Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2009en
dc.identifier.doi10.1142/S0218216509007348en_US
dc.identifier.issn0218-2165
dc.identifier.urihttp://hdl.handle.net/11693/22681
dc.language.isoEnglishen_US
dc.relation.isversionofhttp://dx.doi.org/10.1142/S0218216509007348en_US
dc.source.titleJournal of Knot Theory and its Ramificationsen_US
dc.subjectAlexander polynomialen_US
dc.subjectDihedral coveringen_US
dc.subjectFundamental group.en_US
dc.subjectPlane sexticen_US
dc.subjectTorus typeen_US
dc.titleOka's conjecture on irreducible plane sextics IIen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Oka's_conjecture_on_irreducible_plane_sextics_II.pdf
Size:
378.9 KB
Format:
Adobe Portable Document Format
Description:
Full printable version