Structured least squares problems and robust estimators

buir.contributor.authorArıkan, Orhan
buir.contributor.orcidArıkan, Orhan|0000-0002-3698-8888
dc.citation.epage2465en_US
dc.citation.issueNumber5en_US
dc.citation.spage2453en_US
dc.citation.volumeNumber58en_US
dc.contributor.authorPilanci, M.en_US
dc.contributor.authorArıkan, Orhanen_US
dc.contributor.authorPinar, M. C.en_US
dc.date.accessioned2016-02-08T09:58:49Z
dc.date.available2016-02-08T09:58:49Z
dc.date.issued2010-10-22en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentDepartment of Industrial Engineeringen_US
dc.description.abstractA novel approach is proposed to provide robust and accurate estimates for linear regression problems when both the measurement vector and the coefficient matrix are structured and subject to errors or uncertainty. A new analytic formulation is developed in terms of the gradient flow of the residual norm to analyze and provide estimates to the regression. The presented analysis enables us to establish theoretical performance guarantees to compare with existing methods and also offers a criterion to choose the regularization parameter autonomously. Theoretical results and simulations in applications such as blind identification, multiple frequency estimation and deconvolution show that the proposed technique outperforms alternative methods in mean-squared error for a significant range of signal-to-noise ratio values.en_US
dc.identifier.doi10.1109/TSP.2010.2041279en_US
dc.identifier.issn1053-587X
dc.identifier.urihttp://hdl.handle.net/11693/22338
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/TSP.2010.2041279en_US
dc.source.titleIEEE Transactions on Signal Processingen_US
dc.subjectBlind identificationen_US
dc.subjectDeconvolutionen_US
dc.subjectErrors-in-variablesen_US
dc.subjectFrequency estimationen_US
dc.subjectLeast squaresen_US
dc.subjectRobust least squaresen_US
dc.subjectStructured total least squaresen_US
dc.subjectBlind identificationen_US
dc.subjectBlind identificationsen_US
dc.subjectErrors in variablesen_US
dc.subjectLeast Squareen_US
dc.subjectRobust least squaresen_US
dc.subjectStructured total least squaresen_US
dc.subjectBlind equalizationen_US
dc.subjectCommunication channels (information theory)en_US
dc.subjectConvolutionen_US
dc.subjectEstimationen_US
dc.subjectMeasurement errorsen_US
dc.subjectSignal to noise ratioen_US
dc.subjectUncertainty analysisen_US
dc.subjectFrequency estimationen_US
dc.titleStructured least squares problems and robust estimatorsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Structured least squares problems and robust estimators.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format
Description:
Full printable version