Beaming of electromagnetic waves emitted through a subwavelength annular aperture
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Series
Abstract
We study the diffraction of electromagnetic waves from subwavelength metallic circular apertures in the microwave spectrum. The theoretical and experimental demonstration of the near- and far-field electromagnetic distributions for subwavelength circular annular apertures and circular annular apertures surrounded by concentric periodic grooves are reported here. The metallic samples had a subwavelength hole with a diameter of 8 mm and had concentric grooves with a periodicity of 16 mm. We present the angular transmission distributions from circular annular apertures, and circular annular apertures surrounded by concentric periodic grooves. At the surface-mode resonance frequency the transmitted electromagnetic waves from the subwavelength circular annular aperture surrounded by concentric periodic grooves have a strong angular confinement with an angular divergence of ±3°. This represents a fourfold reduction when compared with the angular divergence of the beam transmitted from the subwavelength circular aperture. © 2006 Optical Society of America.