Dynamic mean-variance problem: recovering time-consistency
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Attention Stats
Usage Stats
views
downloads
Series
Abstract
As the foundation of modern portfolio theory, Markowitz’s mean-variance port-folio optimization problem is one of the fundamental problems of financial math-ematics. The dynamic version of this problem in which a positive linear com-bination of the mean and variance objectives is minimized is known to be time-inconsistent, hence the classical dynamic programming approach is not applicable. Following the dynamic utility approach in the literature, we consider a less re-strictive notion of time-consistency, where the weights of the mean and variance are allowed to change over time. Precisely speaking, rather than considering a fixed weight vector throughout the investment period, we consider an adapted weight process. Initially, we start by extending the well-known equivalence be-tween the dynamic mean-variance and the dynamic mean-second moment prob-lems in a general setting. Thereby, we utilize this equivalence to give a complete characterization of a time-consistent weight process, that is, a weight process which recovers the time-consistency of the mean-variance problem according to our definition. We formulate the mean-second moment problem as a biobjective optimization problem and develop a set-valued dynamic programming principle for the biobjective setup. Finally, we retrieve back to the dynamic mean-variance problem under the equivalence results that we establish and propose a backward-forward dynamic programming scheme by the methods of vector optimization. Consequently, we compute both the associated time-consistent weight process and the optimal solutions of the dynamic mean-variance problem.