IBM streams processing language: analyzing big data in motion

dc.citation.epage7:11en_US
dc.citation.issueNumber3-4en_US
dc.citation.spage7:1en_US
dc.citation.volumeNumber57en_US
dc.contributor.authorHirzel M.en_US
dc.contributor.authorAndrade, H.en_US
dc.contributor.authorGedik, B.en_US
dc.contributor.authorJacques-Silva, R.en_US
dc.contributor.authorKhandekar, R.en_US
dc.contributor.authorKumar, V.en_US
dc.contributor.authorMendell, M.en_US
dc.contributor.authorNasgaard, H.en_US
dc.contributor.authorSchneider S.en_US
dc.contributor.authorSoule´, R.en_US
dc.contributor.authorWu, K. L.en_US
dc.date.accessioned2019-02-01T12:55:33Z
dc.date.available2019-02-01T12:55:33Z
dc.date.issued2013-05-17en_US
dc.departmentDepartment of Computer Engineeringen_US
dc.description.abstractThe IBM Streams Processing Language (SPL) is the programming language for IBM InfoSphere® Streams, a platform for analyzing Big Data in motion. By “Big Data in motion,” we mean continuous data streams at high data-transfer rates. InfoSphere Streams processes such data with both high throughput and short response times. To meet these performance demands, it deploys each application on a cluster of commodity servers. SPL abstracts away the complexity of the distributed system, instead exposing a simple graph-of-operators view to the user. SPL has several innovations relative to prior streaming languages. For performance and code reuse, SPL provides a code-generation interface to C++ and Java®. To facilitate writing well-structured and concise applications, SPL provides higher-order composite operators that modularize stream sub-graphs. Finally, to enable static checking while exposing optimization opportunities, SPL provides a strong type system and user-defined operator models. This paper provides a language overview, describes the implementation including optimizations such as fusion, and explains the rationale behind the language design.en_US
dc.description.provenanceSubmitted by Betül Özen (ozen@bilkent.edu.tr) on 2019-02-01T12:55:33Z No. of bitstreams: 1 IBM_Streams_Processing.pdf: 1306393 bytes, checksum: 5a9a53dee7e9bf10c07f520b05955cb7 (MD5)en
dc.description.provenanceMade available in DSpace on 2019-02-01T12:55:33Z (GMT). No. of bitstreams: 1 IBM_Streams_Processing.pdf: 1306393 bytes, checksum: 5a9a53dee7e9bf10c07f520b05955cb7 (MD5) Previous issue date: 2013-05-17en
dc.identifier.doi10.1147/JRD.2013.2243535en_US
dc.identifier.eissn0018-8646en_US
dc.identifier.issn0018-8646en_US
dc.identifier.urihttp://hdl.handle.net/11693/48728en_US
dc.language.isoEnglishen_US
dc.publisherI B M Corp.en_US
dc.relation.isversionofhttp://doi.org/10.1147/JRD.2013.2243535en_US
dc.source.titleIBM Journal of Research and Developmenten_US
dc.subjectData handlingen_US
dc.subjectInformation managementen_US
dc.subjectOptimizationen_US
dc.subjectBatch production systemsen_US
dc.subjectGeneratorsen_US
dc.subjectSyntacticsen_US
dc.subjectJavaen_US
dc.subjectData processingen_US
dc.subjectInformation processingen_US
dc.titleIBM streams processing language: analyzing big data in motionen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
IBM_Streams_Processing.pdf
Size:
1.25 MB
Format:
Adobe Portable Document Format
Description:
Full printable version

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: